
 1

INTRODUCTION

4D v11 SQL has extended the capabilities of hierarchical list items to allow storage of Object-like structures. The
same hierarchical list item may have values of different types; i.e. numerical, string or boolean. In other words, you
can associate a dictionary with each list item.

Using the commands SET LIST ITEM PARAMETER and GET LIST ITEM PARAMETER, you can store Objects
using native 4D v11 SQL Commands.

Using the new hierarchical lists architecture in 4D v11 SQL, you can now tag lists, data, name pair values, etc.
without the use of plug-ins. With 4D v11 SQL native commands you can store different types of data in Objects that
can be used to manage parameter lists, store preferences, manage sessions, send a record to a different process, etc.

Objects can add flexibility and allow you to improve the way your code is designed and executed.

OBJECTS OVERVIEW

Objects are a single entity that can store and retrieve different types of data. Although similar to BLOBs, Objects
have the advantage of allowing data to be stored and retrieved in any order, as opposed to BLOBs that must be
written and read in the same order.

Objects carry out their functions as an unordered dictionary. A dictionary (associative container, map, hash) is an
abstract data type composed of a collection of keys and values, where each key is associated with one value. The
operation of finding the value associated with the key is called indexing or lookup. Keys in Objects are called
references or tags.

BENEFITS OF USING OBJECTS

4D v11 SQL Nat ive Commands

You can take advantage of Objects in your code without having to install additional plug-ins.

Use of hierarchical l ists

Objects can be created and managed using 4D v11 SQL hierarchical list theme commands.

Storing data as named i tems

Objects can store and retrieve data with items that have a name.

Modif iable data in i tems

The data in an item can be replaced, deleted, copied or created without recreating the Object.

Saving Objects

Objects created using hierarchical lists can be saved in a BLOB. Using the LIST TO BLOB command you can store
the list on a BLOB and save it. Using the BLOB TO LIST command you can retrieve the list.

4 D S U M M I T C O N F E R E N C E 2 0 0 8

U s i n g 4 D v 1 1 h L i s t s t o m a n a g e y o u r O b j e c t s
Presented by: Luis Piñeiros - 4D, Inc.

 2

USES

Preferences

Configuration and preferences information can be saved and restored using Objects.

Session Management

Web based systems can store and manage sessions using Objects.

Replacing the use of Var iables

Objects can store and retrieve information that would normally take large numbers of variables.

Hierarchical ly structured data

Objects can manage complex hierarchically structured information.

Parameter l ists

Objects can be used to store parameter lists for subroutines.

Sending a Record to Another Process

Objects can be used to store complete records and send them to another process.

Sending a Record to Another Computer

Objects can be used to store complete records and send them to another computer.

WHAT ABOUT BLOBS INSTEAD OF OBJECTS?

4D has supported the BLOB (Binary Large Object) data type since version 6. BLOBs can be fields or variables.

Data can be stored and retrieved from BLOBs using all the BLOB theme commands. Advanced commands allow
you to read and write data to a location within the BLOB; however, BLOB commands do not use tabs and pointers,
in addition, arrays of pointers cannot be stored in a BLOB.

OBJECTS IN 4D V11 SQL

4D v11 SQL supports Objects with the introduction of new options in its hierarchical list theme commands.
Particularly, the SET LIST ITEM PARAMETER and GET LIST ITEM PARAMETER. With the use of these new
commands, you can create Object tree-like structures in your 4D programming code. In addition, using BLOBs you
can store and retrieve Objects. All this functionality is now possible using 4D v11 SQL native commands.

Hierarchical l ists

As defined in the 4D v11 SQL Language Reference, hierarchical lists are form objects that can be used to display
data as lists with one or more levels that can be expanded or collapsed. It also specifies that a hierarchical lists is
both a language object and a form object. The language object is referenced by a unique internal ID (listRef). The ID
of type Longint, is generated by commands that are used to create lists: New list, Copy list, Load list and BLOB to
list. There’s one instance of the language object for the list in memory.

Each item of a hierarchical list has a reference number as well, (ItemRef). This value is only intended for your own
use.

 3

Creat ing l ists

There are a few different ways of creating a new list:

New list -> listRef: Creates a new, empty hierarchical list in memory and returns its unique list reference number.

Copy list (list) -> listRef: Duplicates the list whose reference number you pass in listName, and returns the list
reference number of the new list.

Load list (listName) -> listRef: Creates a new hierarchical list whose contents are copied from the list and whose
name you pass in listName. It returns the list reference number to the newly created list.

BLOB to list(blob{;offset}) -> listRef: Creates a new hierarchical list with the data stored within the BLOB at the
byte offset (starting at zero) specified by offset and returns a list Reference number for the new list.

After you have created a hierarchical list you can:

Add items to the list, using the command APPEND TO LIST or INSERT in LIST.

Delete items from the list, using the command DELETE FROM LIST.

COMMANDS TO IMPLEMENT OBJECT STORAGE

Set l ist I tem Parameter

SET LIST ITEM PARAMETER ({* ; } l ist ; i temRef | * ; selector; value)

Parameter Type Description

* * → If specified, list is an object name (string)

 If omitted, list is a list reference number

list listRef | String → list reference number (if * omitted) or

 Name of list type object (if * passed)

itemRef | * Longint | * → Item reference number or

 0 for the last item appended to the list or

 * for the current list item

selector String → Parameter constant

value String|Boolean|Num → Current value of parameter

 4

The SET LIST ITEM PARAMETER command can be used to modify the selector parameter for the itemRef item of
the hierarchical list whose reference or object name is passed in the list parameter.

If you pass the first optional * parameter, you indicate that the list parameter is an object name (string)
corresponding to a representation of the list in the form. If you do not pass this parameter, you indicate that the list
parameter is a hierarchical list reference (listRef). If you only use a single representation of the list or work with
structural items (the second * is omitted), you can use either syntax. Conversely, if you use several representations
of the same list and the second * is passed, the syntax based on the object name is required since each representation
can have its own current item.

You can pass a reference number in itemRef. If this number does not correspond to an item in the list, the command
does nothing. You can also pass 0 in itemRef to indicate the last item added to the list (using APPEND TO LIST).

Lastly, you can pass * in itemRef: in this case, the command will be applied to the current item of the list. If several
items are selected manually, the current item is the last one that was selected. If no item is selected, the command
does nothing.

In selector, you can pass the Additional text constant (found in the “hierarchical lists” theme) or any custom value:

• Additional Text: This constant is used to add text to the right of the itemRef item. This additional title will
always be displayed in the right part of the list, even when the user moves the horizontal scrolling cursor. When
you use this constant, pass the text to be displayed in value.

•
• Custom selector: You can also pass custom text and associate it with a value of the Text, Number or Boolean

type in selector. This value will be stored with the list item and may be retrieved using the GET LIST ITEM
PARAMETER command. This lets you set up any type of interface associated with hierarchical lists. For
example, in a list of customer names, you can store the age of each person and only display it when the
corresponding item is selected.

This is one of the key commands to implement Objects using 4D v11 SQL native commands.

GET LIST ITEM PARAMETER

GET LIST ITEM PARAMETER ({* ; } l ist ; i temRef | * ; selector; value)

Parameter Type Description

* * → If specified, list is an object name (string)

 If omitted, list is a list reference number

list listRef | String → list reference number (if * omitted) or

 Name of list type object (if * passed)

itemRef | * Longint | * → Item reference number or

 0 for the last item appended to the list or

 * for the current list item

selector String → Parameter constant

value String|Boolean|Num ← Current value of parameter

 5

The GET LIST ITEM PARAMETER command is used to find out the current value of the selector parameter for the
itemRef item of the hierarchical list whose reference or object name is passed in the list parameter.

If you pass the first optional * parameter, you indicate that the list parameter is an object name (string)
corresponding to a representation of the list in the form. If you do not pass this parameter, you indicate that the list
parameter is a hierarchical list reference (listRef). If you only use a single representation of the list or work with
structural items (the second* is omitted), you can use either syntax. Conversely, if you use several representations of
the same list and the second * is passed, the syntax based on the object name is required since each representation
can have its own current item.

Note: If you use the @ character in the object name of the list and the form contains several lists that match this
name, the GET LIST ITEM PARAMETER command will be applied to the first object whose name
corresponds.

You can pass a reference number in itemRef. If this number does not correspond to an item in the list, the command
does nothing. You can also pass 0 in itemRef to indicate the last item added to the list (using APPEND TO LIST).

Lastly, you can pass * in itemRef: in this case, the command will be applied to the current item of the list. If several
items are selected manually, the current item is the last one that was selected. If no item is selected, the command
does nothing.

In selector, you can pass the Additional text constant (found in the “hierarchical lists” theme) or any custom value.
For more information about the selector and value parameters, please refer to the description of the SET LIST ITEM
PARAMETER command.

This is another key command to implement Objects using 4D v11 SQL native commands.

GET LIST ITEM

GET LIST ITEM ({* ; } l ist ; i temPos | * ; i temRef; i temText{; subl ist{ ; expanded}})

Parameter Type Description

* * → If specified, list is an object name (string)

 If omitted, list is a list reference number

list listRef | String → list reference number (if * omitted), or

 Name of list type object (if * passed)

itemPos | * Number | * → Position of item in expanded list(s)

 or * for the current item in the list

itemRef Longint ← Item reference number

itemText String ← Text of the list item

sublist listRef ← Sublist list reference number (if any)

expanded Boolean ← If a sublist is attached:

 TRUE = sublist is currently expanded

 FALSE = sublist is currently collapsed

 6

The GET LIST ITEM command returns information about the item specified by itemPos of the list whose reference
number or object name is passed in list.

If you pass the first optional * parameter, you indicate that the list parameter is an object name (string)
corresponding to a representation of the list in the form. If you do not pass this parameter, you indicate that the list
parameter is a hierarchical list reference (listRef). If you only use a single representation of the list, you can use
either syntax. Conversely, if you use several representations of the same list, the syntax based on the object name is
required since each representation can have its own expanded/collapsed configuration and its own current item.

Note: If you use the @ character in the name of the list object and the form contains several lists that match with
this name, the GET LIST ITEM command will only apply to the first object whose name corresponds.

The position must be expressed relatively, using the current expanded/collaped state of the list and its sublist. You
pass a position value between 1 and the value returned by Count list items. If you pass a value outside this range,
GET LIST ITEM returns empty values (0, "", etc.).

After the call, you retrieve:

• The item reference number of the item in itemRef.
• The text of the item in itemText.
• If you passed the optional parameters sublist and expanded:
• sublist returns the list reference number of the sublist attached to the item. If the item has no sublist, sublist

returns zero (0).
• If the item has a sublist, expanded returns TRUE if the sublist is currently expanded, and FALSE if it is

collapsed.

LIST TO BLOB

LIST TO BLOB (l ist ; blob{; *})

Parameter Type Description

list listRef → hierarchical list to store in the BLOB

blob BLOB → BLOB to receive the hierarchical list

 ← New offset after reading

Function result listRef ← BLOB to receive the hierarchical list

The LIST TO BLOB command stores the hierarchical list list in the BLOB blob.

If you specify the * optional parameter, the hierarchical list is appended to the BLOB and the size of the BLOB is
extended accordingly. Using the * optional parameter, you can sequentially store any number of variables or lists
(see other BLOB commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter, the hierarchical list is stored at the beginning of the BLOB,
overriding its previous contents; the size of the BLOB is adjusted accordingly.

Wherever the hierarchical list is stored, the size of the BLOB will be increased if necessary according to the
specified location (plus up to the size of the list if necessary). Modified bytes (other than the ones you set) are reset
to 0 (zero).

 7

Warnig: If you use a BLOB for storing lists, you must later use the command BLOB to list for reading back the
contents of the BLOB, because lists are stored in BLOBs using a 4D internal format.

After the call, if the list has been successfully stored, the OK variable is set to 1. If the operation could not be
performed, the OK variable is set to 0; for example, if there was not enough memory.

BLOB TO LIST

BLOB to l ist (blob{; of fset}) → l istRef

Parameter Type Description

blob BLOB → BLOB to containing a hierarchical list

offset Number → Offset within the BLOB (expressed in bytes)

* * → * to append the value

The BLOB to list command creates a new hierarchical list with the data stored within the BLOB blob at the byte
offset (starting at zero) specified by offset and returns a list Reference number for that new list.

The BLOB data must be consistent with the command. Typically, you will use BLOBs that you previously filled out
using the command LIST TO BLOB.

If you do not specify the optional offset parameter, the list data is read starting from the beginning of the BLOB. If
you deal with a BLOB in which several variables or lists have been stored, you must pass the offset parameter and,
in addition, you must pass a numeric variable.

Before the call, set this numeric variable to the appropriate offset. After the call, that same numeric variable returns
the offset of the next variable stored within the BLOB.

After the call, if the hierarchical list has been successfully created, the OK variable is set to 1. If the operation could
not be performed, the OK variable is set to 0; for example, if there was not enough memory.

Note regarding Platform Independence: BLOB to list and LIST TO BLOB use a 4D internal format for handling
lists stored in BLOBs. As a benefit, you do not need to worry about byte swapping between platforms when using
these two commands. In other words, a BLOB created on Windows using those two commands can be reused on
Macintosh and vice-versa.

PUTTING IT ALL TOGETHER

Lets look at an example to see how to use these commands to create Objects.

In this case we want to create an Object for the Preferences selected by a User in our 4D v11 SQL application.

Instead of creating fields for the User’s preferences in the Accounts we’re going to save all the preferences in a
BLOB field in the Accounts table. The BLOB will contain our Object. We will then retrieve the Object from the
BLOB, and retrieve the preferences from the Object.

With this method we can continue to add preferences without the limitation of having to create fields or variables to
store them

 8

 `...

 `luis piñeiros
 `technical services team member
 `4D, Inc.

 `8.2008

`..

 `Account_Preferences

 ` Called by: Account_Init

 ` Parameters: none

 ` Returns: none

 `Saves and Retrieves User's Preferences in a BLOB field/Accounts Table
 `Creates new Accounts record

`..

C_LONGINT(vObj_listRef;vObj_ItemRef)
C_LONGINT(vObj_listRef_Get;vObj_ItemRef_Get)
C_BLOB(vObj_Blob)

C_TEXT($user_dep;$user_access;$language;$system)
C_BOOLEAN($show_all)
C_LONGINT($row_color)

 `Create a new list
vObj_listRef:=New list

 `Reference No for the list item
vObj_ItemRef:=1

 `Add a list item to the new list
 `Put "preferences" on the text of the list
APPEND TO LIST(vObj_listRef;"preferences";vObj_ItemRef)

 `Store a combination of preferences based on the type of user

$user_dep:="IT" `Information Technolgy
$user_access:="admin" `Administrator Access Level
$language:="US English" `Preferred language
$system:="Mac OS X 10.5" `Operating System
$show_all:=True `Show all records as a default
$row_color:=15594494 `Light blue

SET LIST ITEM PARAMETER(vObj_listRef;vObj_ItemRef | *;"user_dep";$user_dep)
SET LIST ITEM
PARAMETER(vObj_listRef;vObj_ItemRef | *;"user_access";$user_access)
SET LIST ITEM PARAMETER(vObj_listRef;vObj_ItemRef | *;"language";$language)
SET LIST ITEM PARAMETER(vObj_listRef;vObj_ItemRef | *;"system";$system)
SET LIST ITEM PARAMETER(vObj_listRef;vObj_ItemRef | *;"show_all";$show_all)
SET LIST ITEM PARAMETER(vObj_listRef;vObj_ItemRef | *;"row_color";$row_color)

 9

 `Store the list on a BLOB
LIST TO BLOB(vObj_listRef;vObj_Blob)

 `Save the BLOB on the Accounts Preferences BLOB field

READ WRITE([Accounts])
CREATE RECORD([Accounts])
[Accounts]Accounts_ID:=Sequence number([Accounts])
[Accounts]User_First_Name:="Luis"
[Accounts]User_Last_Name:="Piñeiros"
[Accounts]Preferences:=vObj_Blob
SAVE RECORD([Accounts])

 `Clear memory
CLEAR LIST(vObj_ItemRef;*)

 `Now lets retrieve the Object

vObj_listRef_Get:=BLOB to list([Accounts]Preferences)
vObj_ItemRef_Get:=1

GET LIST ITEM
PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"user_dep";$user_dep)
GET LIST ITEM
PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"user_access";$user_access)
GET LIST ITEM
PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"language";$language)
GET LIST ITEM PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"system";$system)
GET LIST ITEM
PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"show_all";$show_all)
GET LIST ITEM
PARAMETER(vObj_listRef_Get;vObj_ItemRef_Get | *;"row_color";$row_color)

 `We get the values that we stored back

 `$user_dep is "IT"
 `$user_access is "admin"
 `$language is "US English"
 `$system is "Mac OS X 10.5"
 `$show_all is True
 `$row_color is 15594494

`..

CONCLUSION

Objects provide a powerful alternative to store and retrieve information. They also contribute to a more object-
oriented style of programming. Objects allow you to store and retrieve information using tags (keys) associated with
values.

QUESTIONS?

