
 1

INTRODUCTION

This summit session is for 4D Developers who have no prior experience with the JavaScript programming language.
This introductory course will teach you the fundamentals of JavaScript programming.

1.0 – WHAT IS JAVASCRIPT

JavaScript is a programming language mainly used for web development. There is a good chance that, as you
browse the web, you will run into more than a few pages where JavaScript is being executed. The code itself is
either embedded in the HTML of the page or referenced in the page and stored externally. What can you do with
JavaScript that you can’t do with HTML? You can create dynamic Web documents, rewriting a page's content on
the fly, responding to certain events or data. You can assert more control over user interaction, for example guiding
a user in filling out a very complex form, prompting when input is done incorrectly, before the form is even
submitted to the server.

1.1 – History

JavaScript was introduced in the mid 1990s by Netscape. After going through a few name changes, the
name JavaScript stuck for the simple reason that an unrelated programming language, Java, was gaining
momentum and popularity at the time. Marketing decided to ride this momentum and the name JavaScript
was finalized. This naming has caused confusion, but remember: JavaScript is not an expansion of Java,
or vice versa. They are two different languages that happened to be similarly named.

1.2 – Standardizat ion

Other browsers besides Netscape soon began to support flavors of JavaScript, so a need for standardization
was in place. Netscape went to ECMA International for this and a document was drafted that described
exactly how JavaScript should work. ECMAScript, as this standardization is called, describes the language
itself and not its integration into a web browser. So you can consider JavaScript to be ECMAScript and
some additional tools for dealing with web pages and web browsers.

1.3 – Where Can JavaScript Be Used?

JavaScript, or variants of ECMAScript (the standardized language derived from JavaScript), are commonly
used in following environments:

• Client-side / Browser, including Ajax and Flash (Flash uses ActionScript, a dialect of ECMAScript)
• Server Side (for example, ASP) (ASP primarily uses VBscript but can also use JavaScript or Jscript)
• On the desktop (for example, Windows Scripting Host, Adobe Acrobat, Adobe Photoshop, Adobe

AIR)

1.4 – What Can JavaScript Do?

JavaScript can be used to accomplish many tasks including:

• Dynamically change HTML on an already loaded page
• Respond to events (like a mouse rollover or a key press)
• Validate data in an HTML form (and ask the user to correct it) before submitting to the server
• Detect and correct for browser incompatibilities
• Create and read cookies
• Parse and Send XML requests (now an Ajax staple)
• Some web-based video games have been written in JavaScript

4 D S U M M I T C O N F E R E N C E 2 0 0 8

I n t r o d u c t i o n t o J a v a S c r i p t

Presented by: Tim Kaufman

 2

1.5 – Suggested Tools for Development

Almost every operating system today should come with the tools required to program in JavaScript. That is
because JavaScript is a client-side scripting language; that being said the simplest of pre-requisites would
be:

• A modern Web Browser
• A simple text editor

Even though the requirements to develop in JavaScript are relatively simple, installing a few specific
applications will make development much easier. An updated installation of the Mozilla Firefox browser
and Firebug extension can drastically cut down on debugging time. In addition, either Notepad ++ (for
Windows users) or Text Wrangler (for Macintosh users) will help with the code highlighting when editing
HTML and JavaScript files.

• Mozilla Firefox web browser
• Firebug extension for Firefox
• Text Wrangler or BBedit (for Macintosh users)
• Notepad ++ (for Windows users)

Firefox can be found at:
http://www.getfirefox.com/

Firebug can be found at:
http://www.getfirebug.com/

Text Wrangler (mac) can be found at:
http://www.barebones.com/products/textwrangler/

Notepad++ (windows) can be found at:
http://notepad-plus.sourceforge.net/

Note: Although the combination of Firefox and Firebug make for a powerful debugging suite,
it is best practice to constantly test your code in all of browsers (and platforms)
during development.

2 .0 – BASIC JAVASCRIPT

Let’s look at the some of the Basics of JavaScript, including the Syntax, Values, Variables, Operators, and Control
Flow.

2.1 – Syntax

Syntax is probably the most important aspect of any programming language. The syntax of JavaScript is a
set of rules that defines what constitutes a valid program in the JavaScript language.

When writing JavaScript you can store your code either inline with the HTML code or you can store your
JS code in a separate .JS file and then reference the JS file from your code.

Example of inline JavaScript:
<HTML>
<HEAD>
<script>
<!--
// this is a comment, comments are preceded by two forward-slashes
var test = 25;
function myAlert(x){
 // this comment is inside of my function
 alert(x); // displays an alert
}
myAlert(prompt('What is a number',’’)+test); // call the myAlert function
-->

 3

</script>
</HEAD>
<BODY>
</BODY>
</HTML>

When writing JavaScript inline, you place your code within a <script> and </script> tag. Inside of the
<script> tags you also want to encapsulate your JS code with HTML comments (‘<!--’ and ‘-->’), to avoid
your code being processed by the web server.

Inline JavaScript is probably the most frequently used, especially among novice JavaScript programmers
and web-scripters.

Here is an example of using an external JavaScript file:

Example of using an external JavaScript
<HTML>
<HEAD>
<script src="js/myLibrary.js"></script>
</HEAD>
<BODY>
</BODY>
</HTML>

As you can see in the example above, the HTML file looks much cleaner when the JavaScript is stored in
an external file. The SRC= attribute of the <script> tag has the relative path to my .js file.

2.2 – Values

To create a value in JavaScript, one must merely invoke its name and assign it a value. You do not have to
declare its type as there is no need for variable typing in JavaScript; this is very convenient and time
saving.

Example declaration:
var x = “Feels like summer started early this year”;

The basic types of values are: Numbers, Strings, Booleans, Null and Undefined values.

Numbers in JavaScript are "double-precision 64-bit format IEEE 754 values", according to the spec. This
has some interesting consequences. There's no such thing as an integer in JavaScript, so you have to be a
little careful with your arithmetic if you're used to math in C or Java. Watch out for stuff like:

0.1 + 0.2 = 0.30000000000000004

Numbers

Values of the type number are represented by numeric values like so:

var x = 144;

Numeric values can also be represented in binary format like so:

var x = 01010101;

NOTE: When writing a numeric value in binary format the number must start with a 0 and
contain only 1’s and 0’s.

 4

Fractional numbers are written using a dot like so:

var x = 285.5;

Octal numbers are supported:

var x = 0377;

Hexadecimal numbers are supported:

var x = 0xFF;

Note: When writing hexadecimal numbers, the letters A-F may be upper- or lowercase.

Scientific Notation is also supported:

var x = 5.965e8;

Str ings

Strings can be a combination of numbers and letters. Strings can be thought of similarly as Text
variables in 4D.

var x = “this is a string”;

Boolean

Boolean values are simply true or false

var x = false;

Note: In JavaScript true and false values must be written lower case

Null

Null is an assignment value that can be assigned to a variable to represent that the variable has no
value. Null differs from Undefined in that the value is defined, although it has been defined as
having no value. Consider the following;

Examples/Example_2-1_null.html
<HTML>
<HEAD>
<script>
<!--
var test = null;
alert('test = ' + test); // displays null
alert('typeof test = ' + typeof test); // displays object
-->
</script>
</HEAD>
<BODY>
</BODY>
</HTML>

 5

The above code snippet first declares a variable named test, and then assigns the value of null to it:

var test = null;

The next line of code displays an alert, telling us what the variable test resolves to:

alert('test = ' + test); // displays null

When that code is run the browser alerts us with the following message:

The next line of code displays an alert, telling us what type of variable test is:

alert('typeof test = ' + typeof test); // displays object

When the code is ran the browser alerts us with the following message:

Undef ined

Undefined means a variable has been declared but has not yet been assigned a value. Consider the
following;

Examples/Example_2-1_undefined.html
<HTML>
<HEAD>
<script>
<!--
var test;
alert('test = ' + test); // displays undefined
alert('typeof test = ' + typeof test); // displays undefined
-->
</script>
</HEAD>
<BODY>
</BODY>
</HTML>

 6

The above code snippet first declares a variable named test, but does not assign a value to it:

var test;

Note: The only difference between this example for Undefined and the earlier example for
Null is that with Null a value was assigned to the variable.

The next line of code displays an alert, telling us what the variable test resolves to:

alert('test = ' + test); // displays undefined

When that code runs, the browser alerts us with the following message:

The next line of code displays an alert, telling us what type of variable test is:

alert('typeof test = ' + typeof test); // displays undefined

When the code runs, the browser alerts us with the following message:

2.3 – Variables

Variables in JavaScript have no user assigned types associated with them, and any value may be stored in
any variable. Variables can be declared using the var keyword. These variables are lexically scoped and
once they are declared, they may be accessed anywhere inside the function they were declared in.
Variables declared outside of any function, and variables first used within functions without being declared
with the ‘var’ keyword, are global once the function runs.

Note: Variable names are case sensitive. The variable ‘a’ is not the same as the variable
‘A’.

Examples/Example_2-3_Variables.html
a = 0; // a global variable
var b = "Howdy!"; // another global variable

function c(){
 g = "geek"; // a global variable
 var f = " inside of c function"; // local variable

 7

 return g + f;
}

h = c();

document.write("a = " + a + "
");
document.write("g = " + g + "
");
document.write("h = " + h + "
");

var tehSuperLongNamedObject = {
 p: "perfect",
 t: "terrific",
 a: "awesome"
}

document.write("
");
document.write("tehSuperLongNamedObject.a="+tehSuperLongNamedObject.a+"
");
document.write("tehSuperLongNamedObject.t="+tehSuperLongNamedObject.t+"
");
document.write("tehSuperLongNamedObject.p="+tehSuperLongNamedObject.p+"
");

with(tehSuperLongNamedObject){
 document.write("
");
 document.write("with(tehSuperLongNamedObject) {
");
 document.write(" a = " + a + "
");
 document.write(" t = " + t + "
");
 document.write(" p = " + p + "
");
 document.write("}");
}

The above code snippet above produces the following results.

In the example above, the variable ‘f’ is local to the ‘c’ function because it was declared inside of the ‘c’
function using the var keyword. On the other hand, even though the variable ‘g’ was first used within the
‘c’ function, it is a global variable because it was not declared with the var keyword. The variable ‘g’ will
therefore be available to the rest of the script once the function has run. The example above also shows two
ways of dealing with objects; one being writing out the full name (e.g. tehSuperLongNamedObject.t) and
the other being to use a with statement. This will be discussed more in the Scope Chain subsection.

 8

Variable names can be almost every word, but they cannot include spaces. Digits can be part of the
variable name but the name must not start with one (e.g., catch22 is a valid variable name but 4D is not).
The ‘$’ and ‘_’ characters can be used in variable names as if they were letters, so $_$ is a valid variable
name as is _4D and $4D.

In addition to these rules, there are also some special keywords that cannot be used as variable names:

abstract boolean break byte case catch char class const continue debugger
default delete do double else enum export extends false final finally float
for function goto if implements import in instanceof int interface long
native new null package private protected public return short static super
switch synchronized this throw throws transient true try typeof var void
volatile while with

Variable Types

The 4D developer is probably used to having to type their variables. JavaScript supports dynamic
typing so types are associated with values, not variables. For example, a variable x could be
bound to a number, and then later rebound to a string.

Scope Chain

Scope can be thought of as a way to determine the context of where you we are and what is around
us… This is important because in JavaScript the scope plays a valuable role.

In JavaScript, if you declare a local variable within a function or an object, it will not be available
outside of that function or object. In the previous section our example declared two variables
named ‘a’, one was global to the whole script, the other was a property of an object… Just
referencing the variable name ‘a’ will surely use the global variable, but what if we wanted to
reference the property of the object? To do this would be objectName.propertyName – but what if
we had multiple properties we needed to reference and didn’t want to type out the full objectName
multiple times? Well, JavaScript has a nice little feature, called with that can augment the scope
chain, to put an object at the top of the scope to be searched first. Consider the following:

document.write(tehSuperLongNamedObject.a+"
");
document.write(tehSuperLongNamedObject.t+"
");
document.write(tehSuperLongNamedObject.p+"
");

Versus

with(tehSuperLongNamedObject){
 document.write(a + "
");
 document.write(t + "
");
 document.write(p + "
");
}
It is not required to use the with keyword, but it can be useful in certain situations. It is important
to note, both produce the same results:

 9

2.4 – Operators

This section covers JavaScript operators including math operators, bitwise operators, and logical operators.
Some advanced math functions are also discussed in this section.

Mathematical Operators

Mathematical operations are probably the most commonly used operators in JavaScript. Here is a
list of the commonly used mathematical operators.

Operator Meaning Explanation

+ Addition Adds to numbers or appends two strings. If more than one type of
variable is used (e.g., number + string) the result will be a string.

- subtraction Subtracts the second number from the first

* Multiplication Multiplies two numbers

/ Division Divides the first number from the second

% Modulus Divide the first number by the second and return the remainder

++ Increment Increment the number by 1

-- Decrement decrement the number by 1

The ‘+’ sign is overloaded; it is used for string concatenation as well as mathematical addition and
is also used to convert strings to numbers. It also has a special meaning when used in regular
expressions. Consider the following:

Examples/Example_2-4_Addition.html
<HTML>
<HEAD>
<script>
<!—

// Concatenate 2 strings

 10

var x = 'This';
var y = ' and that';
alert(x + y); // displays 'This and that'

// Add two numbers
var a = 2;
var b = 6;
alert(a + b); // displays 8

// Adding a string and a number results in concatenation
alert(a + '2'); // displays 22

// Convert a string to a number
var c = '4'; // c is a string (the digit 4)
alert(c + a); // displays 42
alert(+c + a);// displays 6

-->
</script>
</HEAD>
<BODY>
</BODY>
</HTML>

In the code snippet above, various uses of the ‘+’ operator are shown. In the first part, it is shown
that when x and y are strings, the ‘+’ operator will concatenate the arguments.

// Concatenate 2 strings
var x = 'This';
var y = ' and that';
alert(x + y); // displays 'This and that'

The code snippet above results in the following alert box:

The next part of the code snippet shows that using the ‘+’ operator on two numbers will indeed
mathematically add the two numbers together

// Add two numbers
var a = 2;
var b = 6;
alert(a + b); // displays 8

The code snippet above results in the following alert box:

 11

The next part of the code snippet shows that using the ‘+’ operator on one string and one number
will result in the two being concatenated together.

// Adding a string and a number results in concatenation
alert(a + '2'); // displays 22

The code snippet above results in the following alert box:

In the last part of the code snippet the variable ‘c’ is defined as the digit ‘4’. Because the value is
surrounded by quotes it is a string.

// Convert a string to a number
var c = '4'; // c is a string (the digit 4)
alert(c + a); // displays 42

The code snippet above results in the following alert box:

The ‘+’ operator can be used directly to the left of the variable name to try to convert it to a
number. If the variable is unable to be converted to a number, the result will be a NaN. This
would occur, for example, if the value was a string.

alert(+c + a);// displays 6
The code snippet above results in the following alert box:

 12

Here is an example of using the multiplication operator:

Examples/Example_2-4_Multiplication.html
<HTML>
<HEAD>
<script>
<!--
var x = 3;
var y = 4;
alert(y*x);
-->
</script>
</HEAD>
<BODY>
</BODY>
</HTML>
The above snippet of code declares two variables, ‘x’ as 3 and ‘y’ as 4. After declaring the
variables, an alert is called displaying the product of ‘x’ multiplied by ‘y’; as shown in the
following screenshot:

In addition to the mathematical operators in the table above, there are also mathematical functions
already defined in JavaScript. Here is a list of the more advanced mathematical functions in
JavaScript.

Method Syntax Explanation

abs Math.abs(x) Returns the absolute value of x

acos Math.acos(x) Returns the arccosine (in radians) of x

asin Math.asin(x) Returns the arcsine (in radians) of x

atan Math.atan(x) Returns the arctangent (in radians) of x

atan2 Math.atan2(y, x) Returns the arctangent of the quotient y divided by x

ceil Math.ceil(x) Returns the smallest integer greater than or equal to x

cos Math.cos(x) Returns the cosine of x

exp Math.exp(x) Returns Ex where x is the argument an E is Euler’s constant, the base of the

 13

natural logarithms

floor Math.floor(x) Returns the largest integer less than or equal to x

log Math.log(x) Returns the natural logarithm (base E) of x

max Math.max(a,b,c,…x) Returns the largest of zero or more numbers

min Math.min(a,b,c,…x) Returns the smallest of zero or more numbers

pow Math.pow(base,exp) Returns base to the exp power. That is baseexp

random var x = Math.random()
Returns a pseudo-random number in the range of [0,1) – that is, 0 (inclusive)
and 1 (exclusive). The random number generator is seeded from the current
time, as in java

round Math.round(x) Returns the value of a x rounded to the nearest integer

sin Math.sin(x) Returns the sine of x

sqrt Math.sqrt(x) Returns the square root of x – if the value of x is a negative number a NaN is
returned

tan Math.tan(x) Returns the tangent of x

Note: -Trigonometric functions assume that the argument is in radians, not degrees.
 -NaN means “Not a Number.

When using several Math constants and methods in a section of code it is often times more
convenient to use the withstatement like so:

Example
var a, x, y;
var r = 10;
with (Math) {
 a = PI * r*r;
 y = r*sin(theta);
 x = r*cos(theta);
}

As opposed to the following snippet written without the with statement:

var a, x, y;
var r = 10;
a = Math.PI * r*r;
y = r*Math.sin(theta);
x = r*Math.cos(theta);

Note: The with keyword is used to extend the scope chain for a statement as described in
section “2.1 – Syntax”

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they are, they return a
Boolean value. However, the && and || operators actually return the value of one of the specified

 14

operands, so if these operators are used with non-Boolean values, they may return a non-Boolean
value.

Operator Meaning Example Explanation

&& AND expr1 && expr2

Returns expr1 if it can be converted to false; otherwise,
returns expr2. Thus, when used with Boolean values, &&
returns true if both operands are true; otherwise, returns
false.

|| OR expr1 || expr2

Returns expr1 if it can be converted to true; otherwise,
returns expr2. Thus, when used with Boolean values, ||
returns true if either operand is true; if both are false,
returns false.

! NOT expr1 ! expr2 Returns false if its single operand can be converted to true;
otherwise, returns true.

Comparison Operators

The operands can be numerical or string values. Strings are compared based on standard
lexicographical ordering, using Unicode values. JavaScript has both strict and type-converting
equality comparison. For strict equality the objects being compared must have the same type and:

Two strings are equal when they have the same sequence of characters, same length, and
same characters in corresponding positions

Two numbers are strictly equal when they are numerically equal (have the same number
value). NaN is not equal to anything, including NaN. Positive and negative zeros are
equal to each other

Two Boolean operands are strictly equal if they are both true or false

Two objects are strictly equal if they refer to the same Object

Null and Undefined types == (but not strictly ===)

The following table describes the comparison operators:

Operator Meaning Explanation

== Is equal to

If the two operands are not of the same type,
JavaScript converts the operands then applies strict
comparison. If either operand is a number or a
Boolean, the operands are converted to numbers; if
either operand is a string, the other one is converted
to a string

=== Strict Is equal to Returns true if the operands are strictly equal with no
type conversion

!= Not equal to

Returns true if the operands are not equal. If the two
operands are not the same type, JavaScript attempts
to convert the operands to an appropriate type for the
comparison

!== Strict not equal to Returns true if the operands are not equal and/or not

 15

of the same type

> is greater than Returns true if the left operand is greater than the
right operand

< is less than Returns true if the left operand is less than the right
operand

>= is greater than or equal to Returns true if the left operand is greater than or
equal to the right operand

<= is less than or equal to Returns true if the left operand is less than or equal
to the right operand

Special Operators

Here are some additional operators with specialized uses.

Operator Meaning Explanation

? Conditional

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if
statement.

condition ? ifTrue : ifFalse;

, Comma

The comma operator evaluates both of its operands and returns the value
of the second operand. You can use the comma operator when you want
to include multiple expressions in a location that requires a single
expression. The most common usage of this operator is to supply
multiple parameters in a for loop.

Examples/Example_2-4_Conditional.html
confirm("Question") ? alert("you clicked OK") : alert("you clicked
Cancel");

The code snippet above shows a conditional statement. The conditional statement in this example
displays a confirmation box to the user, the confirmation box simply says “Question” and returns
either true or false depending on whether the user clicks OK (true) or Cancel (false). If the user
clicks OK, the confirm dialog will return true and the first condition will be ran alerting the user
that “you clicked OK”. If the user clicks Cancel the confirm dialog will return false and the
second condition will be ran alerting the user that “you clicked Cancel”.

Conditional statements do not need to be confirmation dialogs; you could write a conditional
statement that checks a value of one variable and sets the value of another depending on the value
of the first. Consider the following:

Examples/Example_2-4_Conditional2.html
var myFavoriteColorIsRed = (favoriteColor == ‘red’) ? true : false;

The code snippet above sets the variable myFavoriteColorIsRed to true if the variable
favoriteColor is equal to ‘red’, otherwise the myFavoriteColorIsRed is set to false. Another way
to write this would be:

 16

Examples/Example_2-4_Conditional3.html
if(favoriteColor == ‘red’){
 myFavoriteColorIsRed = true
}else{
 myFavoriteColorIsRed = false
}

As you can see, the conditional statement is considerably shorter and would take less time to
write. Either way you write it, the result will be the same.

/

2.5 – Control f low

Your methods will always use one of the three types of programming structures, regardless of the method's
complexity. These three types control the execution's flow including the order of statements executed.
They will be described individually in more detail below.

Sequential
Looping
Branching

Sequential

A sequential structure is in place when your code moves from one statement to another following
a linear path from the top-most statement to the bottom. Here is an example of that.

Examples/Example_2-5_sequential.html
var x = 5;
var y = 20;
var z = x*y;
alert(z);

The above example sets the ‘x’ variable to 5 and the ‘y’ variable to 20. The ‘z’ variable is set to
the product of ‘x’ and ‘y’ then an alert is displayed showing the value of ‘z’.

Looping

If you need to recursively repeat a sequence of statements more than once, Javascript provides
three looping structures for you to use.

For

For loops are very useful when you need a block of code to repeat a certain number of times. Here
are some examples of

Examples/Example_2-5_for.html
for(var myCounter = 0; myCounter < 13; myCounter++){
 document.write(myCounter+'
');
}

 17

The above code will loop through the number 0 to 12 and write each one to the webpage on its
own line.

Examples/Example_2-5_for_comma.html
for(var counter1=0,counter2=9;counter1<10; counter1++,counter2--)
document.write(counter1+"x"+counter2+"="+counter1*counter2+"
");

The code snippet above is a for loop. The loop statement is broken down into three parts
separated by semi-colons. When broken up, the three parts are:

• var counter1=0, counter2=9;
• counter1 < 10;
• counter1++, counter2--

 18

In the first part of this loop we set the variable ‘counter1’ to 0 and the variable ‘counter2’ to 9. In
the second part of the loop statement, ‘counter1 < 10’, we loop for as long as the variable
‘counter1’ is less than 10. The last part of the loop statement, ‘counter1++, counter2--‘ says for
each iteration of the loop the variable ‘counter1’ will be incremented and the variable ‘counter2’
will be decremented.

The line immediately following the for statement will be repeated for the iterations specified in the
for statement. If more than one line of code needed to be repeated it should be encapsulated with
squiggly brackets. In this example the following line of code will be repeated:

document.write(counter1+"x"+counter2+"="+counter1*counter2+"
");

Which would result in the following page:

While

While loops are useful when you need a block of code to be repeated while a specified condition is
true.

Examples/Example_2-5_while.html
var myCounter = 0;
while(myCounter < 13){
 document.write(myCounter+'
');
 myCounter++
}
The above code will loop through the number 0 to 12 and write each one to the webpage on its
own line.

 19

Do

A do loop is a variant of the while loop.

Examples/Example_2-5_do.html
var myCounter = 0;
do{
 document.write(myCounter+'
');
 myCounter++;
}
while(myCounter<13)
The above code will loop through the number 0 to 12 and write each value to the webpage on its
own line.

Branching

 20

The last of the three structures is called a branching structure. Branching lets you test a condition
and take different paths depending on the results of the condition. An example of a branching
structure is an If...Else...End statement, which directs program flow accordingly.

I f / Else / Else I f / Break

If statements are generally used to check specific conditions and run code appropriate to the
conditions present. Here are some examples of if statements written in JavaScript:

Examples/Example_2-5_if.html
for(var myCounter = 0; myCounter < 13; myCounter++){
 if(myCounter % 3 == 0 && myCounter != 0){
 document.write(''+myCounter+'
');
 }else{
 document.write(myCounter+'
');
 }
}
The code above will loop through the numbers 0 to 12 and write each of one to the webpage on its
own line. The numbers that are cleanly divisible by 3 will be marked in bold (excluding 0).

The following example will loop through the numbers 0 through 20 and write each number to the
webpage on its own line. The numbers 16 through 20 will have two asterisk next to it, the
numbers 11 through 15 will have 1 asteroid next to them, and numbers 0 through 10 will be
written normal.

Examples/Example_2-5_if2.html
for (var myCounter = 0; myCounter <= 20; myCounter++) {
 if (myCounter > 15)
 document.write(myCounter + "**" + "
");
 else if (myCounter > 10)
 document.write(myCounter + "*" + "
");
 else
 document.write(myCounter + "
");
}
The following image displays the output that would be visible on the webpage:

 21

User Interact ion

An important part of any program is user interaction. User interaction allows an application to
behave in response to specific interactions with the user. As the developer, you are able to define
these interactions. The basic types of user interaction are Alert, Prompt, and Confirm:

Alert

An alert is one way to display information to the user. This type of user interaction is normally
used for errors and other informative messages where there is no decision to be made by the user.

Examples/Example_2-5_alert.html
alert(“Hello World!”);
The above line of code will display an alert message on the screen with the text “Hello World!” in
the message box.

 22

As you can see from the image above, an alert produces a message box with a single button (OK)
to push.

Prompt

A prompt is used when you want a written response from the user, such as their name.

Examples/Example_2-5_prompt.html
var myname = prompt("What is your name?","my name");

The above code will prompt the user with a message “What is your name?” and will have a default
value of “my name”. The information submitted will be available in the variable named myname.
The dialog box will look similar to the following image in FireFox:

If the user clicks OK the myname variable will be set to whatever is entered into the prompt, if the
user clicks CANCEL the myname variable will be null. If the user enters 3, the myname variable
will be a string; to force it to be a number instead of a string you can place the + operator to the
left of the prompt command like so:

var myname = +prompt("What is your name?","my name");

However, if you use this method and the user inputs something other than numbers the myname
variable will be set to NaN. Also, with the prompt asking for your name and supplying a default
value of “my name”, it would be a little strange to have your JavaScript coded to expect a number
instead of a string. Either way, that is the procedure of how you do it.

Confirm

The confirm command is used to when you need the user to confirm an action or information.

Examples/Example_2-5_confirm.html
var myanswer = confirm("Have you had enough?");
The above line of code produces a dialog box that asks “Have you had enough?” and has two
buttons, an OK and a CANCEL button. The user’s action will be stored in the variable named
myanswer. The dialog will look similar to the following image:

 23

If the user clicks OK the myanswer variable will be set to true, if the user clicks CANCEL the
myanswer variable will be set to false.

3.0 – FUNCTIONS

Being a 4D Developer, you are probably already familiar with writing methods. A function is very similar to a
method in a sense that you write reusable code inside of functions, than call these functions elsewhere in your code.
Functions can interact with each other, and even interact with the user. In this section we will explore writing
functions and passing arguments to our functions.

3.1 – Wri t ing a funct ion

Writing a function in JavaScript is pretty simple. You start with the keyword function and follow it with
the name of your function. Following the function name is the parenthesized arguments your function is
expecting followed by an open squiggly bracket. All of your code goes after this open squiggly bracket,
and is followed by a close squiggly bracket.

Examples/Example_3-1_Writing_a_Function.html
function mytestfunction(){
 var arg1 = prompt(“give me a number”,”2”);
 var arg2 = prompt(“give me another number”,”3”)
 sum = arg1 + arg2;
 alert(sum)
}

Note: Pages that are abundant with alerts and confirms suffer from poor design.
Alert/Confirm/Prompt boxes block the entire browser and “surfing” experience. They
should only be used if it’s critical information, such as “are you sure you want to
ERASE ALL DATA in this form?”

Although parenthesized arguments were mentioned in the passage preceding this example, our function in
the example above does not expect any arguments (section 3.2 will go over passing arguments to a
function). Instead, this function prompts the user for input during execution. Let’s look more closely at
what the code snippet above does.

First it prompts the user with the message “give me a number” and presents the user with ‘2’ as the default
value. When the user clicks OK the value entered will be set to the arg1 variable. Here is a screenshot of
the dialog box:

The function then prompts the user with the message “give me another number” and presents the user with
‘3’ as the default value. When the user clicks OK the value entered will be set to the arg2 variable. Here is
a screenshot of the dialog box:

 24

The function then tries to add the two variables together using the ‘+’ operator and then display the result
using an alert box. Here is the result when the default values are used:

You are probably aware that the value displayed in the alert box is not what we were expecting. This is
because the values were interpreted as strings so the ‘+’ operator concatenated the two variables together.

Let’s take what we learned about the ‘+’ operator in the previous sections and modify the test function
above to treat our variables as numbers instead of strings.

Answer:

function mytestfunction(){
 var arg1 = prompt("give me a number",2);
 var arg2 = prompt("give me another number",3)
 sum = +arg1 + +arg2;
 alert(sum)
}

Or

function mytestfunction(){
 var arg1 = +prompt("give me a number",2);
 var arg2 = +prompt("give me another number",3)
 sum = arg1 + arg2;
 alert(sum)
}

Notice how you can address the issue either at the prompt or when you try to add them together.

3.2 – Passing arguments to a funct ion

It becomes increasingly important throughout writing JavaScript to be able to pass arguments (or values) to
your function. To do this is relatively simple in nature. The previous section mentioned parenthesized
arguments; this is where you would put the variables names you want to reference in your function.

Example function definition
function addtogether(arg1, arg2){
 return arg1 + arg2;
}

 25

The above example takes two arguments, adds them together, and returns the sum. To call the function and
assign the return value to a variable named testResults would look like the following:

Example function call
var testResults = addtogether(5, 16);

The above function call would return 21 and set the testResults variable as the result.

Example function returns
testResults = 21

4 .0 – DATA STRUCTURES: OBJECTS AND ARRAYS

Objects and Arrays are very similar in JavaScript. This section will explore some of the differences as well as ways
to programmatically tell them apart from each other.

Some important facts about Objects and Arrays are:

.length property works on arrays, it doesn’t work on objects

To loop through array values use:

for (var arrayCount = 0; arrayCount < myArray.length; arrayCount++){
 myArray[arrayCount] = “current array element”;
}

To loop through object values use:

For (var objectProperty in myObject){
 myObject[objectProperty] = “current object property”;
}

4.1 – Dif ference between objects and arrays

Arrays are numbered and have one level while an object can be multi-leveled and the elements are named
instead of numbered.

Examples/Example_4-1_array.html
myArray = new Array();
myArray = [‘my first entry’,’my second entry’,’my third entry’];

The above code will produce an array that looks like the following image when inspected with Firebug:

Examples/Example_4-1_single-level_object.html
myObject = new Object();
myObject = {
 color: ‘red’,
 size: ‘large’,
 somethingelse: ‘not me’
}

The above code will produce an object that looks like the following image when inspected with Firebug:

 26

Examples/Example_4-1_multi-level_object.html
myObject = new Object();
myObject = {
 color: ‘red’,
 size: ‘large’,
 pages: {
 deleted: [1,5,21,34,55],
 added: [32,56,76],
 showadded: true,
 showdeleted: false
 },
 somethingelse: ‘not me’
}
The above line of code will produce an object that looks like the following image when inspected with
Firebug:

4.2 – An array can also be an object?

In JavaScript an Array is also an Object; but an Object is not necessarily an Array

Examples/Example_4-2_Array_Object.html
myArray = new Array();
myArray = [‘my first entry’,‘my second entry’,‘my third entry’];

Clearly the above code defines an array named myArray and populates it with three values.

You can reference the values in an array like so:

By number with brackets
myArray[‘3’] = ‘my fourth entry’;

NOTE: In JavaScript the numbering of array element’s start at 0, so in the example above
element number 3 is the fourth element…

 27

You can also add a named value to an array. This is completely allowed in JavaScript, however it is not
suggested because you will have both named and numbered elements in your array.

augmenting an array to also be an object
myArray.somethingelse = “is this still an array?”;

4.3 – Determining an object f rom an array

In JavaScript, an Array is an Object. The only difference is that it has un-named elements (that become
numbered). We can determine if an object has un-named elements by using the instanceofkeyword.

Examples/Example_4-3_object_or_array.html
myObject = new Object();
myObject = {
 color: 'red',
 size: 'large',
 pages: {
 deleted: [1,5,21,34,55],
 added: [32,56,76],
 showadded: true,
 showdeleted: false
 },
 somethingelse: 'not me'
}

myArray = new Array();
myArray = ["testing an array; item 1", "testing an array; item 2", "testing an
array; item 3", "testing an array; item 4"]

whatthearray = myObject instanceof Array;
whattheobject = myObject instanceof Object;
whatthetype = typeof myObject;

whatthearray2 = myArray instanceof Array;
whattheobject2 = myArray instanceof Object;
whatthetype2 = typeof myArray;

The above script shows us that:

myObject instanceof Array = false
myObject instanceof Object = true
typeof myObject = object

myArray instanceof Array = true
myArray instanceof Object = true
typeof myArray = object

This can be a little confusing because arrays also return true when tested with instanceof Object. So be
sure to test for ‘instanceof Array’ to determine whether it is an array or an object.

Note: This may be a moot point since most developers will know whether or not their
variable is an Object or an Array.

 28

And when inspected with Firebug looks like:

5.0 - MODULARITY

Often times it becomes necessary, or convenient, to break up your program into modules. Breaking your program
into modules can make it look less cluttered, easier to read, and often times easier to modify. To do this, you can
save your JavaScript functions into .js files. Once your code is stored in .js files you can load them into the browser
by placing a <script> tag with a src attribute into your HTML page; for example:

Examples/Example_7-0_Modularity.html
<HTML>
<HEAD>
<script type=”text/javascript” src=”js/ex_7-0_modularity.js”></script>
</HEAD>
<BODY>
</BODY>
</HTML>

When writing JavaScript into its own .js file, you do not need to encapsulate it within a <script> tag. This is because
when you load the .js file into the browser via the method above, the .js file is referenced within a <script> tag as the
value of the SRC= attribute. You also do not need to encapsulate your JavaScript code within comments as
previously shown. Lets look at the code in our js/myLibrary.js file:

Examples/js/ex_7-0_modularity.js
var test = 25;
function myAlert(x){
 // this comment is inside of my function
 alert(“Your number plus 25 = ” + x); // displays an alert
}

function getNum(){
 var c = +prompt('Quick, tell me a number!','');
 while(isNaN(c) || c==""){
 var c = +prompt('That wasn\'t a number... Tell me a number!','');
 }
 return c;
}

 29

function myLoader(){
 myAlert(getNum()+test);
}

window.document.onload = myLoader();

5.1 – Order Matters

In JavaScript, the order in which you write your code matters. You cannot write code that depends on a
function or object that has not yet been defined. Consider the following code:

<HTML>
<HEAD>
<script>
<!--
myLoader();
-->
</script>
<script type="text/javascript" src="js/ex_7-1_order_matters.js"></script>
</HEAD>
<BODY>
</BODY>
</HTML>

In the example above, the myLoader function is defined within the ‘js/ex_7-1_order_matters.js’ file, but
myLoader is called before the ‘js/ex_7-1_order_matters.js’ file has been loaded; this would generate an
error:

Firebug Console Error:
myLoader is not defined
Examples/Example_7-1_Order_Matters.html
Line 5

Simply moving the calls that load the external JS file to above the myLoader() call would resolve that error:

<HTML>
<HEAD>
<script type="text/javascript" src="js/ex_7-1_order_matters.js"></script>
<script>
<!--
myLoader();
-->
</script>
</HEAD>
<BODY>
</BODY>
</HTML>

Another approach would be to place the myLoader() call in the body’s onload event; that way the browser
will not try to execute the myLoader() function until after the page is finished loading. This would look
like:

<HTML>
<HEAD>
<script type="text/javascript" src="js/ex_7-1_order_matters.js"></script>
</HEAD>
<BODY onload=”myLoader();”>
</BODY>
</HTML>
The example script above will not execute the myLoader() function until the web page and all of its
elements are finished loading.

 30

6.0 – WEB PROGRAMMING

JavaScript can play an important role in web programming because there are a lot of things you can do with
JavaScript that you cannot do with HTML alone. However this is not to say that JavaScript is limitless. There are
actually quite a few limits to what JavaScript can do. For instance, a script cannot interact with the elements of a
web page hosted on a different server other than that the script is hosted on. After all, it would be a little unsafe if
the scripts running on myspace.com could interact with the DOM elements on bankofamerica.com.

6.1 – Form Val idat ion

Form Validation is one of the many uses of JavaScript on the web today. The concept of form validation is
to check the form elements and prompt the user to correct any mistakes before submitting their contents to
the server avoiding any page refreshes. Just like how the complexity of the form and the data you are
requesting varies from task to task, the script that does the form validation will also vary in complexity.
Let’s look at a single input form; in this example we are asking for an email address.

Examples/Example_8-1_Single_Input_Validation.html
<HTML>
<HEAD>
<script type="text/javascript" language="JavaScript">
<!--
function validateForm(a) {

 var str = a.email.value;
 if((str.indexOf("@") > 0) && (str.indexOf(".") > 2) && (str != "")){
 return true;
 }else{
 str == "" ? alert("email field was left blank") : alert("\"" + str
+ "\" does not seem to be a valid email address");
 return false;
 }
}
-->
</script>

</HEAD>
<BODY>
<form action="#" method="POST" id="myform" name="myform" onsubmit="return
validateForm(this)">
 <p>Email: <input type="text" name="email" id="email"></p>
 <input type="submit" value="Submit">
</form>
</BODY>
</HTML>

The above sample code produces a very basic form that looks like the following image:

The HTML code behind this example form is very basic.

 31

<form action="#" method="POST" id="myform" name="myform" onsubmit="return
validateForm(this)">
 <p>Email: <input type="text" name="email" id="email"></p>
 <input type="submit" value="Submit">
</form>

From the code snippet above we can see that when the form is submitted there will be a browser event
“onSubmit” that calls the JavaScript code “return validateForm(this)”. validateForm is the name of our
function, we pass along the keyword this so that our function can reference the context that called the
function. By prepending the keyword return before our function call the form will not be submitted if the
function returns false.

The JavaScript function validateForm(a) looks like this:

<script type="text/javascript" language="JavaScript">
<!--
function validateForm(a) {

 var str = a.email.value;
 if((str.indexOf("@") > 0) && (str.indexOf(".") > 2)){
 return true;
 }else{
 str == "" ? alert("email field was left blank") : alert("\"" + str
+ "\" does not seem to be a valid email address");
 return false;
 }
}
-->
</script>

When the form is submitted the function will be called. The function sets a local variable named str to the
field identified by ID=email within our form that was passed to our function as this(now referenced as a):

var str = a.email.value;

The function then checks the value of the email field for a few specific items:

‘@’ is included and not the first character
‘.’ is included and is in the 3rd or higher character position (counting in JavaScript starts at 0)

The code snippet for this looks like:

if((str.indexOf("@") > 0) && (str.indexOf(".") > 2)){
 return true;
}

If both those conditions are met, the function returns true and the form is submitted. If the conditions are
not met the following block of code is executed:

else{
 str == "" ? alert("email field was left blank") : alert("\"" + str
+ "\" does not seem to be a valid email address");
 return false;
 }
}

 32

At this point in the script we already know it is not a valid email, so the function simply tests if the value is
empty, if it is empty the user is alerted with a message stating the “email field was left blank” otherwise
they are alerted with a message stating that what they entered “does not seem to be a valid email address”.
With either message the function also returns false telling the form not to be submitted.

Note: There is also a multi-input example of form validation with the examples for this
course. Look for “Examples/Example_8-1_Form_Validation.html” in the examples
folder.

6.2 – Image Rol lovers

A certain level of pop can be achieved by adding roll over effects to images. In this subsection we look at
changing elements based on the “onmouseover” browser event. Here is our example page:

Examples/Example_8-2_Image_Rollovers.html
<HTML>
<HEAD>
<script>
<!--
function hide(a){
 a.style.visibility = "hidden"; // set visibility to hidden
 a.onmouseout = function () {a.style.visibility = "";} // revert
visibility back to default
}

function changePic(a,b){
 var curSrc = a.src; // set variable curSrc to the current img src
 a.src = b; // set the current src to the
 a.onmouseout = function () {a.src = curSrc;} // set the onmouseout event
to revert back to the original
}

-->
</script>
</HEAD>
<BODY>

<img src="images/helloworld.jpg" onmouseover="changePic(this,
'images/helloworld4.jpg');">

<img src="images/helloworld1.jpg" onmouseover="changePic(this,
'images/helloworld5.jpg');">

<img src="images/helloworld2.jpg" onmouseover="changePic(this,
'images/helloworld6.jpg');">

<img src="images/helloworld3.jpg" onmouseover="changePic(this,
'images/helloworld.jpg');">

<img src="images/helloworld4.jpg" onmouseover="changePic(this,
'images/helloworld1.jpg');">

<img src="images/helloworld5.jpg" onmouseover="changePic(this,
'images/helloworld2.jpg');">

<img src="images/helloworld6.jpg" onmouseover="changePic(this,
'images/helloworld3.jpg');">

</BODY>
</HTML>

When loaded in Firefox it looks like the following screenshot:

 33

The first image on the web page has the following HTML:

We can see from this HTML tag that when the mouse is over this element the hide function will execute
with this as its argument. Here is the hide function:

function hide(a){
 a.style.visibility = "hidden"; // set visibility to hidden
 a.onmouseout = function () {a.style.visibility = "";} // revert
visibility back to default
}

From inspecting the function you can see that the first thing it does is set the argument passed in to the
function as the variable ‘a’. In the function call, the keyword this is passed as the argument, so the
function’s variable ‘a’ is going to be set to the element the function was attached to (i.e. ‘a’ is equal to our
 tag). The next thing the function does is set the style.visibility of the element to hidden. Finally the
function sets the onmouseout event of the same element equal to an anonymous function that will reset the
image’s visibility back to default.

The remaining images on this webpage (all saying “Hello world!”) have a different function attached to
their “onmouseover” browser events. Here is the HTML for the remaining images:

<img src="images/helloworld.jpg" onmouseover="changePic(this,
'images/helloworld4.jpg');">

<img src="images/helloworld1.jpg" onmouseover="changePic(this,
'images/helloworld5.jpg');">

<img src="images/helloworld2.jpg" onmouseover="changePic(this,
'images/helloworld6.jpg');">

<img src="images/helloworld3.jpg" onmouseover="changePic(this,
'images/helloworld.jpg');">

<img src="images/helloworld4.jpg" onmouseover="changePic(this,
'images/helloworld1.jpg');">

<img src="images/helloworld5.jpg" onmouseover="changePic(this,
'images/helloworld2.jpg');">

 34

<img src="images/helloworld6.jpg" onmouseover="changePic(this,
'images/helloworld3.jpg');">

As you can see, these images do not use the hide() function. These images use the
onmouseover="changePic(this, 'images/helloworld3.jpg');" function. Here is the function definition:

function changePic(a,b){
 var curSrc = a.src; // set variable curSrc to the current img src
 a.src = b; // set the current src to the
 a.onmouseout = function () {a.src = curSrc;} // set the onmouseout event
to revert back to the original
}

As you can see from inspecting the code, this function expects two arguments; ‘a’ and ‘b’. In the function
calls that are attached to the image’s onmouseover browser events the this keyword is passed as the first
argument (set to ‘a’ in the function) and the relative path to the image we want visible while the mouse is
over the image is passed as the second argument (set to ‘b’ in the function). The function first sets a
variable curSrc equal to the current images source location. The function then sets the current source
location of the image to the value of ‘b’ (the second argument passed in to this function). The last part of
this function sets the “onmouseout” browser event of the image equal to an anonymous function that will
revert the source location back to the original (saved as curSrc).

6.3 – Text Fi l l ing

JavaScript also has the ability to modify text on an already loaded web page. An example has been created
to demonstrate this. Here is a look at the code for this example:

<HTML>
<HEAD>
<script>
<!--

function fillMySpan(){
 var x = document.getElementById("textToFill");
 var y = document.getElementById("fillHere");
 y.innerHTML = x.value;
}

function addToMySpan(){
 var x = document.getElementById("textToFill");
 var y = document.getElementById("fillHere");
 y.innerHTML += x.value;
}

-->
</script>
</HEAD>
<BODY>
<form ID="fillerForm">
<TEXTAREA ID="textToFill">Sample Text</TEXTAREA>
<input type="button" onclick="fillMySpan();" value="fill my span">
<input type="button" onclick="addToMySpan();" value="add to my span">
</form>
<hr>
Sample Text
</BODY>
</HTML>

The above example produces an web page that looks like the following when rendered in Firefox:

 35

The page consists of a simple form:

<form ID="fillerForm">
<TEXTAREA ID="textToFill">Sample Text</TEXTAREA>
<input type="button" onclick="fillMySpan();" value="fill my span">
<input type="button" onclick="addToMySpan();" value="add to my span">
</form>

And a simple :

Sample Text

Separated by a horizontal rule:

<hr>

When the user clicks on the “fill my span” button the fillMySpan() function is executed. Here is the
function definition for fillMySpan():

function fillMySpan(){
 var x = document.getElementById("textToFill");
 var y = document.getElementById("fillHere");
 y.innerHTML = x.value;
}

What this function does is first set the variable ‘x’ to the elements identified by the ID=textToFill attribute.
Then the ‘y’ variable is set to the element identified by the ID=fillHere attribute. The function then sets the
innerHTML property of ‘y’ (i.e. our span identified by ID=fillHere) and sets it to the value property of ‘x’
(i.e. the text entered into the textarea form element identified by ID=textToFill). This will overwrite any
text already visible in the span identified by ID=fillHere.

There is also a second button, labeled as “add to my span” which has a similar function assigned to it.
When a user clicks on the “add to my span” button the addToMySpan() function is executed. Here is the
function definition for the addToMySpan():

function addToMySpan(){
 var x = document.getElementById("textToFill");
 var y = document.getElementById("fillHere");
 y.innerHTML += x.value;

 36

}

As you can see, the addToMySpan is almost identical to the fillMySpan() function. The only difference is
that we are appending the value property of the ‘x’ variable to the innerHTML property of the ‘y’ variable
instead of resetting this property.

7.0 – BROWSER EVENTS

Web Apps written in JavaScript receive user and browser actions via browser events. Without them JavaScript
would be a very uninteresting language. Browser events are used for a lot of things; for example, events are used
during form validation, dynamic menus, etc. Browser events are a way for your scripts to react upon specific user
actions.

7.1 – Standard Browser Events

The following is a list of standard browser events; more events do exist, but they are not fully supported by
all browsers.

Category Type Attribute Description

Click onclick

Triggers when the mouse or pointing device button is
clicked over an element. A click is defined as a
mousedown and mouseup over the same screen
location. The sequence of these events are:

mousedown
mouseup
click

Double-click ondblclick Triggers when the mouse or pointing device button is
double-clicked over an element

Mousedown onmousedown Triggers when the mouse or pointing device button is
pressed over an element

Mouseup onmouseup Triggers when the mouse or pointing device button is
released over an element

Mouseover onmouseover Triggers when the mouse or pointing device is moved
onto an element

Mousemove onmousemove Triggers when the mouse or pointing device is moved
while it is over an element

Mouse

Mouseout onmouseout Triggers when the mouse of pointing device is moved
away from an element

Keypress onkeypress

Triggers when a key on the keyboard is clicked. A
keypress is defined as a keydown and a keyup on the
same key. The sequence of these events are:

keydown
keyup
keypress

Keydown onkeydown Triggers when a key on the keyboard is pressed

Keyboard

Keyup onkeyup Triggers when a key on the keyboard is released

 37

Load onload

Triggers when the user agent finishes loading all content
within a document, including window, frames, objects,
and images.

For elements, it triggers when the target element and all
of its content has finished loading

Unload onunload

Triggers when the user agent removes all content from a
window or frame.

For elements, it triggers when the target element or any
of its content has been removed

Abort onabort Triggers when an object or image is stopped from
loading before it is completely loaded

Error onerror Triggers when an object/image/frame cannot be loaded
properly

Resize onresize Triggers when the document view is resized

HTML
Frame/Object

Scroll onscroll Triggers when the document view is scrolled

Select onselect Triggers when a user selects some text in a text field,
including input and textarea

Change onchange Triggers when a control loses the input focus and its
value has been modified since gaining focus

Submit onsubmit Triggers when a form is submitted

Reset onreset Triggers when a form is reset

Focus onfocus Triggers when an element receives focus either by the
pointing device or by the keyboard

HTML Form

Blur onblur Triggers when an element loses focus either by the
pointing device or by the keyboard

DOMFocusIn ondomfocusin Similar to the HTML focus event, but can be applied to
any focusable element

DOMFocusOut ondomfocusout Similar to the HTML blur event, but can be applied to
any focusable element User Interface

DOMActivate ondomactivate Triggers when an element is activated; for example,
through a mouse click or keypress

Let’s look at an example browser event. In this example I am using the same
window.document.body.onload event that is used within the 4D Ajax Framework:

<body onload="dax_login('Guest','');" onunload="dax_bridge.logout();">

 38

Note: There are many resources online for browser events. A good place to start is
http://en.wikipedia.org/wiki/DOM_Events

7.2 – Attaching Events to Elements

There are multiple ways to attach events to elements. This section will discuss the different methods and
their drawbacks.

In l ine Event Registrat ion

In the early days of JavaScript, browsers only supported one type of event registration. This was
known as inline event registration. In this type of event registration, event handlers were added as
attributes to the HTML elements they were going to interact with. Consider the following:

Example

In the above example an alert is triggered when the user clicks on the image. You can also call a
JavaScript function using inline event registration like so:

Example

The example above calls the function named myFunction when the user clicks the image.

Although inline event registration has been around the longest, and is pretty reliable, it still has
one serious flaw. It requires you to write JavaScript code in line with the HTML, which is argued
as a bad practice from the perspective of separating HTML presentation from JavaScript code.

Tradit ional Event Registrat ion

Earlier we discussed how the window and document are objects. Within these objects are more
objects and properties; including all of the elements within our webpage. Being that we can
interact with each of these elements through JavaScript, it is possible to attach events to elements
like so:

Example
element.onclick = doMyFunction();

The code snippet above attaches an event to the element named “element” that will trigger the
‘doMyFunction()’ function when “element” is clicked.

Let’s say you wanted to add an onload event to the body of a webpage, to trigger the ‘myStartup()’
function when the page is loaded. The JavaScript code to do this would look like:

Example
window.document.onload = myStartup();

The above JavaScript code snippet can be placed with the rest of your JavaScript code, as long as
it is located outside of a function, and will be evaluated when it is sequentially loaded. If this code
snippet was placed inside of a function, the event would only be registered once the function has
been evaluated.

Advanced Event Registrat ion

There may come a time when you need to attach multiple functions to the same event; although
the event registration models do not directly support this, you can use anonymous functions to get

 39

around this limitation. Let’s say you wanted both doMyFunction() and myStartup() to be
triggered when the page loads. This can be accomplished with the following code snippet:

Example
window.document.onload = function () {myStartup(); doMyFunction();}

The above code snippet is written on 1 line for simplicity, if your needs dictated, you could write
the function on multiple lines like so:

Example
window.document.onload = function () {

/* This is my anonymous function that will be called
 when the window finished loading */

myStartup(); // call the myStartup() function
 // the myStartup function could check cookies,
browser, etc

doMyFunction(); // the doMyFunction function could do anything, it is
used
 // in this example to demonstrate calling multiple
 // functions with one event.

}

In the second example, many comments were added to demonstrate that an anonymous function
can sometimes be easier to write because it allows more room for commenting and code structure.

8 .0 – QUESTIONS

There will be time at the end of the session for questions.

