4D SUMMIT CONFERENCE 2008

Introduction to the 4D Ajax 0®
Framework Summit

Presented by: Joseph Resuello LONG BEACH 2008

SESSION INTRODUCTION

This session is for 4D Developers who have no prior experience with the Web 2.0 Pack. This introductory session
will guide the developers through hands-on demos, which will lead them to gain an overall understanding of the
framework. They will also learn how to develop Ajax applications using the 4D Ajax Framework. A sample
database is provided with a demo of the 4D Ajax Framework (4DAF) component already installed.

This session will focus on building Custom Ajax applications and it will do so without much interaction in the
Client. The example demos will target the Data Grid object and Dashboards.

SESSION REQUIREMENTS

In this session we will create Ajax applications, which will be previewed using Mozilla’s Firefox browser. This is to
take advantage of the Add-on extension, Firebug, which is an excellent web development tool.

The Firebox browser can be found at:

http://www.mozilla.com/en-US/firefox/

Firebug can be found at:

http://www.getfirebug.com/

Developers must also have an HTML editor.

The latest revision of the 4D Ajax Framework (4DAF) v11 can be run on 4D 2004 or 4D v11 SQL. Thus, the
developer must have at least one of these versions of 4D to run the interpreted source database that is included in the
session materials.

SECTION 1: PREFACE ON AJAX

Before we begin discussing what Ajax is, perhaps it is best to start discussing what Ajax isn’t. Many 4D Developers
may not have much experience with web serverAjax is a commonly misunderstood phenomenon, and now would be
a good time to dispel some common misconceptions and myths about it.

What Ajax isn’t

Here are some common misconceptions as to what many believe Ajax is.

A Technology

Ajax is not a new technology. In fact, Ajax uses common technologies that existed long before it
came to be. Thus, there is no Ajax Plug-in. Users do not need special software such as browser
plug-ins or desktop applications in order to use an Ajax application.

A Language

To the relief of many, Ajax is not a new programming language. Developers cannot code in Ajax
so, fortunately, many do not have to learn a new technology. However, as will be explained further
later, Ajax does use a scripting language and other languages and if developers are not already
familiar with these existing technologies then building an Ajax application from scratch will
require some time to get the hang of.

Proprietary

Although it is a highly popularized buzzword, Ajax is not the name of a company or a product. In
this respect many confuse Ajax with a proprietary technology such as Flash, which can also be
used to created interactive web applications. One particular downside for proprietary technologies
is that users need to download additional software in order to view and use it. Fortunately for
Ajax, this is not the case.

What Ajax is

With those misconceptions out of way, let’s unravel the truth behind what Ajax is:

A Technique

Ajax is a way of using existing technologies to create interactive web applications. These existing
technologies are JavaScript, XML, HTML, and CSS. As mentioned earlier, these technologies
existed long before the Ajax phenomenon came to be. Thus, Ajax is more of a novel and effective
technique of using these technologies to create interactive web applications.

It uses open standards

Without getting into too much detail about web standards and such, the point here is that Ajax
uses open technologies. Thus, Ajax applications can be implemented in any browser, free of legal
constraints. Any recent browser is Ajax-compatible (IE 5.0+, Mozilla 1.0+, Firefox 1.0+, Netscape
7.0+, and Apple added it to Safari 1.2+).

What are the characteristics of an Ajax application?

Ajax applications are interactive. In the world of web applications, this is a novel idea. Before Ajax came
into the picture, the line between web applications and desktop applications was quite distinct. Now that
line is becoming more and more grayed-out as Ajax web applications now have the GUI features with
much of the seamlessness and responsiveness of desktop applications.

Few or No Page Reloads

Web applications from the old days are heavy on page reloading. Make any request to the web
server, and the web page would have to be reloaded so that you can witness the changes.

Example

Here is an example of a working form.

hello there]

Reset |

Submit

The above picture is an example a web form that does not use Ajax. Once the user is done entering
information they can hit the Submit button. Once they hit the Submit button, the page reloads to
present something like the following:

Thanks!

Your sample form has been submitted.

Return to form

The form is fine as it is, but it isn’t great. There are some noticeable pitfalls to having a web
application such as this one.

What if the user entered incorrect information?

Suppose the user entered too many digits for a phone number field. Suppose the email address
they entered was badly formed. The user would not have been informed of their mistakes until
after they hit they Submit button.

Take a look at the following example.

YAHOO! MAIL Yahoo! - Help

Already have an ID or a Yahoo! Mail address? Sign In.

Fields marked with an asterisk * are req

Create Your Yahoo! ID

First name:

Last name:
Preferred content:
Gender:

Yahoo! ID:

Password:

Re-type password:

|Google is

|Better

IYahoo! usS. ~| H

Igogg|e @yahoo.com

ID may consist of a-z, 0-9, underscores, and a single dot (.)

’ Check Availability of This ID_ | ‘

eases

Six characters or more; capitalization matters!

If You Forget Your Password...

Security question:

Your answer:

Birthday:

Z|P/Postal code:

Alternate Email:

IWho was your childhood hero? ~|

]Gmail

Four characters or more. Make sure your answer is memorable for you but hard for others to guess!
anuary 1700 U

| Gl

This is part of the registration form for creating a new Yahoo! Mail user account. Now suppose we
had made mistakes in this form. The following is what we would see after a hit of the Submit
button and a page reload.

_ Please correct the entries highlighted in yellow. We either had trouble understanding
L) those fields, or need more information.

® Someone has already chosen that Yahoo! ID. Please choose another Yahoo! ID.
For help, please click the Find an Available ID button below.

® You didn't specify a valid Birthday.

® You didn't specify an understandable Zip or Postal Code for United States(Please
verify that you have selected the correct Country.)

® You need to enter the code shown to verify your registration.

Fields marked with an asterisk * are required

Create Your Yahoo! ID
First name: Google is
Last name: Better

Gender: Male

Yahoo! ID: }google @yahoo.com

ID may consist of a-z, 0-9, und

and a single dot (.)

’ Find an Available ID I

Password: [Not Shown for Your Protection]

If You Forget Your Password...

Security question: Who was your childhood hero?

Your answer: Gmall

Birthday: | [Select a Month] | IHW E
EEE—

ZIP/Postal code:

Country: | United States R4

We would be presented with the same form but with indicators showing us where we messed up.
The downside of such an application is that the user had wasted valuable time during the page
reload. It would have been nice to have been informed of the mistakes as the fields were being
entered. Also, this makes for an unpleasant and rather dry user experience. The 1-2-3 Step of /)
Enter Information, 2) Submit Information, and then 3) Cross Fingers and Hope the Information
was Well Received shows that there is clearly a lack of interactivity going on. An Ajax application,
on the other hand, could validate information as it was entered.

Ajax to the Rescue

Speaking of page reloads and email registration sites, let’s take a look at the email registration form for
Gmail. We will notice that it has some Ajax capabilities. Here is the field for entering your email password.

Choose a password: l : Password strength:

Minimum of 8 characters in length.

Right now no information is entered yet.

Choose a password: ,"‘1 : Password strength: Too short
Minimum of 8 characters in length.

However, as I type, a notification appears to the right. This one tells me my password length is too short.

Choose a password: R Password strength: Weak

Minimum of 8 characters in length.

Here I am being told that my password is not that strong. Hackers may be able to figure it out quite easily.

Choose a password: lnnn"ann{ : Password strength: Strong

Minimum of 8 characters in length.

Now my password is satisfactory. I noticed that as I was typing in possible passwords, I did not have to
wait for a page reload to see these notifications. These notifications appeared in real time, asynchronously
as I was typing. This makes the experience interactive, and it is made possible by Ajax.

Graphical responsiveness

Indicators presented in the example above show how Ajax can create an interactive user experience. Those
examples, however, represent only the tip of the iceberg when it comes to the graphical responsiveness that
Ajax applications are capable of. Here now are more graphically rich examples of Ajax applications.

Ajax Characteristics

There are a couple of things that should be really noted when seeing an Ajax application in action.

®en06 3031 Tisch Way, San Jose, 95128 - Google Maps (e}
«” €' 4 [Glhuo:simas.googe.comy =1 2) No change here
Web Images Video News Maps Gmail more ¥ Savi ocations | Sign in | Help
T ST T T e e T
O L)g e |3031 Tisch Way, San Jose, 95128| Search Maps
"| Search the map | Find businesses Get directions
Search Results | = My Maps @ Print (< Send &= Lmk to this page
3031 Tisch Way % ~ [_Street view [| Trafic || Map [Ssateliite | Hybrid P!
San Jose, CA 95128 3 — i m‘ [o]
Make this my default location v - Address: =
ecil Ave

3031 Tisch Way
StevensC San Jose, CA 95128

e

Get directions: To here - From here \7
Search nearby - Save to My Maps

I 1) Use app here :

By poamalde
Hanson 5

sny eda

any KiUoH §

Olin Ave

aAY POOMASON

’i

PUIPA S

' Olsen

. Frank ==

Smlam Park 4880
Parkm)|
o0 =

Jumw“’ s"'" D
(Z50)

2] 'm' - N =
|ﬁ’_’;_l_;°,p)a
S 'm 1007 Google - Ma data ©2007 NAVTEQ™ + o fUsg

Charles Cg,

‘ PHg Jajsay

Z0

The address bar does not change: Since only parts of the web page are being updated on the fly, there is no
need for a new HTML page to appear. The power of Ajax means that only specific elements on the page
are changed.

I Status bar and Loading indicators hardly load I

’e 06 3031 Tisc?\ivay, San Jose, 95128 - Google Maps
- Qj /I‘ @] http://maps.google.com/ v @ v Google Q
Web Images Video News Maps Gmail more ¥ Saved Locations | Sign in | Help
GO &)8 le |3031 Tisch Way, San Jose, 95128 Search Maps
Search the map Find businesses Get directions
Search Results | My Maps & Print (3 Send @ Lmk to lhIS Qag
3031 Tisch Way § [Street View [| Traffic || Map [Sateliite | Hybnd f,
San Jose, CA 95128 B Dorcien st -
. B 3 = X -
Make this my default location Address: =
Cecil Ave
3031 Tisch Way
3 E" San Jose, CA 95128

5te'vens c

Get directions: To here - From here

: Search nearby - Save to My Maps
Row w =l M

C\anDr

y Frank

E Drys Santana Park T
10@! = - JumP*'“ serrt
15260 @o.1007 Google - o il @MAVTEG‘“ y
Done

PNg I8}S8URUIN S

There is minor indication of loading while interacting with this the Ajax application. This makes the user
experience asynchronous. Progress bars may indicate some activity between the web page and the web
server, but that activity does not interrupt the user.

How Does Ajax do it?

I know what you are thinking and the answer to your question is, “No, black magic is not what
makes Ajax applications work the way they do”. In this section we will get into some detail about
the technologies that make an Ajax application run.

XHTML and CSS

This is what makes the user interface of the web application. Why XHTML and CSS? Because
they represent an interface that any browser can display. Being compatible on any browser
(whether it be proprietary like Internet Explorer or open source like Firefox) is one of the core
strengths of an Ajax application.

DOM

DOM stands for Document Object Model, and it is a widely accepted programming interface that
allows you to update specific areas on the page.

XML

XML is a tag language, much like HTML but it allows for more explicit tags. XML is the format
that information is passed between the web application and the web server.
XMLHttpRequest

This is an object supported by most browsers that allows the application to make requests to the
server without having to reload the page in order to process the request.

JavaScript

JavaScript is the scripting language that acts as the glue that puts all of these pieces together. Ajax
applications rely heavily on this technology. One of the downsides of JavaScript is that 4D
developers may not be familiar enough with this language to create Ajax applications.

SECTION 2: RIA VS. WEBPAGE WITH AJAX ELEMENTS

One key concept to understand is that two types of web pages can be implemented with Ajax: 1) A full Rich Internet
Application (RIA) or 2) A static webpage with Ajax objects on it.

Rich Internet Applications

Rich Internet Application’s (RIA’s) are web applications with interactive objects fully and seamlessly
integrated together. A good example is an email application such as Gmail or Yahoo! Mail.

Once a user logs into the page they enter a web-based mail application that fully stands on its own. All
objects are interactive and integrated with one another. All interactivity occurs on the same page. For
example, the user can hit the ‘Compose Email’ link and a particular area of the page refreshes to compose a
new email. As mentioned in Chapter 1, an RIA’s URL does not change even though there may be
interactivity with the backend. Ajax does all the heavy lifting by updating only certain areas on the page
that need updating depending on the user’s request.

‘ sM ” I i Search Mail || Search the web [S22ssezch otions
|

Compose Mall Reuters: Oddly Enough - Getting paid to drink -
Inbox (946} Archive | ReportSpam | Delete | |MoreActions ¥ | Refresh
Starred 7 Select: All, None, Read, Unread, Starred, Unstarred
Email Chats &> [~ BOXX Technologies It's a Hot Rod and a Workstation! - BOXX Click h nunication from BOXX. 10435 Bum|
. - Sentbdail [~ CostcoNews [E=EZT) Celebrate Mom with Blooms and Bling - costco com Pr.
Actions mﬂl [~ Zappos.com [fomi | New Reebok Lifestyle Styles at Zappos.com - Hell
Spam (20] [~ CostcoNews =23 Sering Shopping Guide - One Week Left To Save. - ¢
Trash [~ eBay Motors Seller special: $35 vehicle insertion fee -
Contacts [~ registration [Sa pace] Welcome
e oM = Meetups in the Making: Weekly Update - Meetups in
[Chet [~ CostcoNews (571 Costello Queen Bed, $499.99 After $200 OFF
. Ll [~ carolynYao 5Five Presents Vikter Duplaix & Professor Versati - Caro
¢ g‘::mus — [~ Friendster [ZZTE) New Friendster Message from lark - 04123/08 07:44 AM
contact [~ Club One at Santana Row (571 Club One at Santana Row - I you ad this it
s20 [~ ThinkGeek Overlords =X Dueling Space Marines at ThinkGeek - Having troub itonline here: thinkgeek.com/edm/2001
Buddy sales [~ SmithMicro == 50 Spring Cleaning 9.1 Now Leopard Compatible - Clean Your Mac, Regain Wasted Space! having tro
List M convice [~ YouTube Service (=170 saraib04 wants to share videos with you! - YouTube Broadcast Y 4i monstercinema, I've be: g YouTube to sha
support [~ Yelp-Silicon Valley [friends | It's a Green Day in the Neighborhood - Y&l en Day in the Nel
Options v Add Contact [~ Friendster (5170 Apps: New Releases and Easier to Share - Friends!
e — [~ registration Comic-Con International 2008 — Receipt and Confirmation - Ev
coworkers (8) @ [~ CostcoNews Toshiba 47" 1080p LCD - $1,299.99 After $300 OFF - o
family (8) s [~ Kaboodle Newsletter = Kaboodle Newsletter for April 16th -
friends (8 e [~ YouTube Service debbje sent you a video! - YouTube Broadcast Yoursel(™ de
‘shopping deals (6) 1 [~ GameRail =1 =71 GameRail Network discontinued - It ep
Editlabels [~ THREAD Show San Francisco | [ESNSDER) [T THREAD I/ THIS SUNDAY J/ RSVP TODAY - Cilck he

A static webpage with Ajax objects on it

Conversely, an RIA may not be necessary for a developer. They may just need some static web pages with
static content, and all the interactivity they may need would only reside within an interactive Ajax object
embedded on the page. For example, maybe all that is a needed is an interactive data grid. The grid itself
would dynamically update if the data is changed from the backend, live searches can be performed on the
content, and it could responsively support in-line editing.

This particular scenario fulfills the scope of this introductory Ajax training course. RIA’s, on the other
hand, are much too complex and advanced to be covered within this introductory course. However, being
able to embed objects onto a static page is one gigantic leap forward on the road to creating Rich Internet
Applications. In this course we will use template web pages and we will embed interactive Ajax objects
onto them using the objects provided by the 4D Ajax Framework.

SECTION 3: GETTING ACQUAINTED WITH THE 4DAF

Installation

To get acquainted with the 4D Ajax Framework (4DAF), installation is probably the best place to start.

NOTE: For installation instructions please refer to the document “4DAF Install & Upgrade”.

What’s So Different After Installation?

We have a 4D database with the 4D Ajax Framework (4DAF) component installed. What does that mean
exactly? Launch the sample database, and let’s highlight some noticeable changes.

Web Server Preferences

In 4D, go to Preferences -> Web. Take note of the publishing port, HTML root folder, and the default home
page file.

Publishing port — The port the web server publishes on.
HTML root folder — Root directory containing the web files for the web page.

Default Home Page — The default HTML page that is loaded when users connect to the web server.

g Application Web Server Publishing
¢ Design Mode
E;i% Data?)ase ¥ Publish Database at Startup

() Backup TCP Port: 8080| (Usually 80)

B, Client-Server

S Euiresst Al s
Configuration @ Allow SSL for Web Server
Advanced -
Options HTTPS Port Number: 443 (Usually 443)
Log Format

Log Schedul
Lz \::b Scerevicuezr Default HTML Path

ol saL Default HTML Root:
WebFolder ‘/ 5

Default Home Page:

index.html|

Let’s test what happens when we connect to the web server.

On the same machine that is running the sample database, open up your Firefox web browser and connect
to:

http://localhost:8080

NOTE: ‘Localhost’ means the same machine you are currently using. ‘8080’ is the port that the web server
is published on.

e 06 4D Ajax Framework v11 (=)
- @ £ [@hup://ocalhost 8080/ v| & (G- Google Q

Welcome to 4D Ajax Framework!

The 4D Web 2.0 Pack is a set of applications, tools, plug-ins, and
components that allow a 4D developer to quickly hamess the power of Web
2.0 technology and create lightweight, agile web and widget based
applications over a 4D framework.

Right now you are using the 4D Ajax Framework, a web-based toolkit that
helps you develop fully functional Ajax-powered applications without having
to invest a lot of time leaming CSS and JavaScript.

Use this application for fast prototyping of a new application, or to rapidly
convert existing applications to a web framework. Integrate third party data
with developer-defined windows and create new Mash-ups With the 4D Ajax
Framework, you have the power.

What you do with it is up to you.

Sign In with your 4D Database = Show console Show control
account. window & panel &1

Choose your language: | | ™% 7~ @

Find: Q

Done (v]

Notice that by connecting to the web server at http://localhost: 8080 we are directed to the default HTML
page (index.html) specified in 4D Preferences.

Web Folder files
Where is the default HTML page index. html?

Navigate to the test database in your operating system and next to the structure file is the ‘Webfolder’
folder. The 4D Ajax Framework installs important files in this location such as JavaScript libraries, CSS
themes, etc. However, we will focus on the HTML files located at the top level at the moment. These are
the HTML pages the users see when they connect to your webserver.

The 4DAF Client

Let’s take a look at the 4D Ajax Framework Client. The Client itself is an RIA that serves your database on
the web. To see the Client, hit the Sign In link at http://localhost:8080. Enter username ‘Administrator’
with no password.

| 0606 4D Ajax Framework v1.2 =

@ - ¢

Q @ hutp://localhost:8080/ v " Client Environment Q

Settings.
[People
: Meetings
Tasks

= Emails

= Formulas

: Choices

(] Members

= Agenda_ltems
= Participants
History

(5] Reports

= Groups

[Finds

[History_Detai
Files
£ syme
5 View_1

I Logout " Console I Control Panel I

In this environment, 4D tables are listed in the Portal area to the left. Click on the table name to load it:

666 4D Ajax Framework v1.2 =
@ @ £ @ hup://iocalhost8080/indexchtmi =

[/ Portal 3 Contacts

) Contacts
) Aspointments.
) Appointments by Contact

Layout | Left >| Header [Firstname ~v| Image [Picture ~| Sort [None =
Al Contacts. \ Campbel | Castro Valley | Danvile | Giroy | Hayward | Mountain View | San Francisco | San Jose | San Leandro | Sunnyvale | Union City

E L

Stephanie
[13
Frstname Stephanie
Lastname Alright
"< Fulname Stephanie Abriaht

A table can be represented graphically, just like the Image Matrix style shown above, which represents
your records visually. Now remember that this is an Ajax environment, so your users can interact with

these objects asynchronously. They can perform live searches, they change styling and formatting, they can

modify records, etc. Everything is asynchronous. Everything is updated live.

Here is an example of another Ajax object, the Calendar:

10

806 4D Ajax Framework v1.2 o
v i ([Gl* Google 2

@ £ @ nup:yiiocalnost:8080 index.htmi

) Contacts
3y Appointments

by con
RO et Cortet Display [Desit =] [Nore =] Range [Date =1 to[Nene =]
At Appammts

22 August 2007 [Contaa]| aQ ™6

01

02

10

09

08
Dentist Appointment

05 06 07

12 13 14 15 16 17
Golng over the new d Discussing New Projei Lunch with Friends

24
Shopping with Sanjay

21 23

22
Meeting with the Rea

28 29 30 31
Help with the homew Update on projects Late Lunch Meeting Meeting with new bos
Presentation about th

As long as your table has date fields, they can be represented in this Calendar object. What is nice is that
these objects (the Calendar, the Image Matrix, etc.) are already created for you. All that you have to do is
assign what object style best represents your tables.

As wonderful as the Client is, let’s move on to creating your own pages with the framework. Thus, we’ll
try to minimize time spent on the Client and focus on creating web pages with Ajax objects embedded in
them.

SECTION 4: THE TEMPLATE PAGE

Creating a web page with Ajax objects embedded into it can be a daunting task if you are a 4D developer with not

much web development experience. Have no fear; a Template Web Page is here. This page will set everything right

so that the only thing you need to worry about is deciding what type of object to embed.
Let’s take a closer look at the Template Page from top to bottom.

The First Lines are for Compatibility

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

The first couple of lines ensure the best compatibility with the 4D Ajax Framework objects. For instance,
we are stating that Transitional XHTML mode is used.

Compatibility code
<HTML>

</HTML>

11

Not much has to be explained here. Just be sure to include these lines of code as soon as possible when
creating a web page from scratch, which you intend to use for the 4DAF.

Note: This code appears before the <HTML> tag.

Framework Libraries and Stylesheets

The next set of lines specify which JavaScript libraries from the framework the page should refer to as well
as the stylesheet which will determine the look of the 4DAF Objects on the page.

<script language="javascript" type="text/javascript"
src="dax/dev/callbacks.js"></script>

<script language="javascript" type="text/javascript"
src="dax/js/framework.js"></script>

<script language="javascript" type="text/javascript"
src="dax/js/dax.js"></script>

<link rel="stylesheet" href="dax/themes/leopard/leopard.css" media="all"
type="text/css" title="Leopard" />

<head>

JS Libraries and Stylesheet

Note: This code appears within the top of the <head> tag. Since the browser reads this information in a

top to bottom manner, it is best to include these libraries early before any actual JavaScript code specific to
the 4DAF is included soon below.

JavaScript code

4D Developers can add their JavaScript code within the following:

<script language="javascript" type="text/javascript">

dax_loginSuccess = function()
{
// Insert code to embed 4DAF objects here
}
</script>

Developers can actually include JavaScript anywhere within the <script> tag. However, it is recommended
to insert code within the dax_loginSuccess function because it is a good place for beginners to start coding.
The 4D Ajax Framework provides the dax loginSuccess function, and it is called soon after the page has
been validated through the login process (explained soon).

12

<body

<head>
JS Libraries and Stylesheet

JavaScript code for
embedding 4DAF objects

:/head>

Login

In this Template page the 4DAF’s dax_login function is called within the <body> element tag.
onload="dax login ("Guest", "")">

Here, user ‘Guest’ is entered with no password. The same dax_login function checks if the user can be
validated by the 4D Users and Groups password system or if the developer is rolling out their own

password system.

In this particular case, we are rolling out our own pass system. The username ‘Guest’ is being allowed
permission to see the 4D Ajax Framework objects that will be embedded on the page.

Firebug

It is recommended that the developers install Firebug to the Mozilla Firefox web browser. This is a
powerful tool for debugging the front end side of things during web development.

Although Firefox and Firebug is a great setup for debugging purposes, it is best practice to constantly test
your Ajax applications in all browsers (and all platforms) during development.

Firebug has some important features that are essential to web development:

Console: See the XML requests that are received from the web server. Any errors that occur will be
reported here.

13

(SXSXS)

4D Ajax Framework v11

<« (<)

/1% @ hup://localhost:8080/ v B

' Google

Welcome to 4D Ajax Framework!

The 4D Web 2.0 Pack is a set of applications, tools, plug-ins, and
components that allow a 4D developer to quickly hamess the power of
Web 2.0 technology and create lightweight, agile web and widget based
applications over a 4D framework.

Right now you are using the 4D Ajax Framework, a web-based toolkit
that helps you develop fully functional Ajax-powered applications
without having to invest a lot of time learning CSS and JavaScript.

Use this application for fast prototyping of a new application, or to
rapidly convert existing applications to a web framework. Integrate third
party data with developer-defined windows and create new Mash-ups
With the 4D Ajax Framework, you have the power.

\What vou-doawith it isun.tovou.

,’:,’ Inspect Clear Profile Q
Console | HTML CSS Script DOM Net YSlow
» GET hup://localh /DAX/ (63ms)

>35>

compilejs (line 13585)

Options ¥

Find: (Q

Done

[

=

Open Firebug by hitting the green checkmark icon in the bottom right of Firefox. Once it’s loaded, hit the
Console tab to see what requests the Console has logged.

Inspect CSS: This is a great tool for understanding the layout of elements on your page. See what CSS
styles are applied for certain elements on the page.

SECTION 5: DEVELOPER HOOKS

Developer Hooks are there to give the developer as many ways as possible to implement their own requirements and
designs into their solution. They are deemed “hooks” because they are regarded as situations where developers can
hook-in to insert or inject their own custom code. Each hook has its own defined set of parameters and specified

result type. The 4DAF Developer Hooks can be categorized in the following manner:

¢ Callback installation and event response

* DCS creation and record handling
* DDW installation and assignment

* Choice List installation, assignment, and manipulation

¢ User Groups

* Login and Session control
* Query control

* Record control

¢ Global preferences

The following tables give a general description of each Developer Hook:

14

Callback installation and event response

Method Names

Description

DAX DevHook CB_EventFired

[Callbacks] This method is called anytime a
field receives an enabled event. Supported
events are On Load or On Data Change
(applicable only to input fields).

DAX DevHook_CB_Install

[Callbacks] This method is called at startup to
allow the developer to enable events for
specific fields (applicable only to input fields).

DAX_DevHook_InstallCallBack

[Callbacks — Backward compatibility for pre
1.2 version] This method was the previous way
of adding a Callback to handle an event. It
should no longer be used, but is kept for
compatibility with version 1.1 (applicable only
to input fields).

DCS creation and record handling

Method Names

Description

DAX DevHook DCS RecordDelete

[DCS] This method is called whenever 4DAF is
asked to delete a DCS record. It is up to the
developer to take appropriate action.

DAX DevHook_DCS _RecordSave

[DCS] This method is called whenever 4DAF is
asked to save a DCS record. It is up to the
developer to take appropriate action.

DAX DevHook_DCS_SetSelection

[DCS] This method is called whenever 4DAF
needs the selection for a DCS View added
through the DAX DevHook DCS ViewAdd
method. The developer populates their arrays
and returns them.

DAX DevHook DCS ViewAdd

[DCS] This method is provided for the
Developer to add custom Views to the 4DAF
web interface using arrays as the data source.

DDW installation and assignment

Method Names

Description

DAX DevHook DDW Install

[DDW] This method is provided for the
Developer to add DDW Views to the 4DAF
web interface.

Choice List installations, assignments and manipulations

Method Names

Description

DAX DevHook_InstallChoiceList

[Choice List] This method allows developers to
install or overwrite a choice list that will be
used for a field (applicable only to input fields).

DAX DevHook_ListContents

[Choice List] This method is provided for the
Developer to override a list before it is sent to
the front-end.

15

Users and Groups

Method Names

Description

DAX DevHook_GetGroupsList

[Users/Groups] This method is provided for the
Developer to override the default 4DAF Groups
system. If you have a users/groups system in
place you can override the 4DAF group system
here. This should be used in tandem with

DAX DevHook UserInGroup.

DAX_DevHook_UserInGroup

[Users/Groups] This method is provided for the
Developer to override the default 4DAF Groups
system. If you have a users/groups system in
place you can override the 4DAF group system
here. This should be used in tandem with

DAX DevHook GetGroupsList.

Login and Session control

Method Names

Description

DAX DevHook_Login

[Login] This method is provided for the
Developer to override the default 4DAF login
system. The default is to use the built-in Users
and Groups system.

DAX DevHook_SessionValidate

[Session] This method is provided for the
Developer to override the default 4DAF session
management system. The developer must also
override DAX DevHook Login if they are
taking control of session management.

Query control

Method Names

Description

DAX DevHook _OnQuery

[Query] This method is called whenever 4DAF
is about to perform a query. Developers can
perform their own query in this method. This
may be useful when performing queries on a
separate lookup table or if you wish to
implement 'fuzzy matching' or Hash based
queries.

DAX DevHook_QueryAdd

[Query] This method is provided for the
Developer to add custom queries to the 4DAF
web interface. All custom queries will be added
to the standard list of queries available on the
front-end admin area. They appear to the user
as tabs in the selection window.

DAX DevHook_QueryFilter

[Query] This method is called right before the
XML that is sent to the front-end is constructed.
If you need to remove any records from the
selection that was created you can do so here.

Record control

Method Names

Description

16

DAX DevHook_DeleteRecord [Record Control] This method is called
whenever 4DAF is about to delete a record. The
developer can accept or reject the action and
also handle any other actions, such as logging,
that is required.

DAX DevHook_SaveRecord [Record Control] This method is called
whenever 4DAF is about to save a record. The
developer can accept or reject the action and
also handle any other actions, such as logging
or deleting related records.

Global Preferences

Method Names Description

DAX _DevHook_Preferences [Global Preferences] This method is provided
for the Developer to override the default
preferences of the 4DAF system

SECTION 6: TABLES, DCS, AND VIEWS

There are 3 types of data structures that can be represented in the 4D Ajax Framework.

@)
@)
O

Tables
Developer Created Selections (DCS)
Views

Tables

Tables and fields from your application’s data structure translate automatically to the front end. No work
has to be done to be able to see the tables from the 4D table structure in the Client.

Developer Created Selections

Developer Created Selections (DCS) allow the developer to create a custom table based tables and fields in
the existing table structure. This gives the developer freedom in creating a data selection in any way and
from any data source they want.

Unlike physical tables or Views, a DCS structure and selection must be created programmatically. The
developer must compose the DCS structure using arrays. The content of the arrays will be read into the 4D
Ajax Framework structure during the startup of the application.

Given the following 4D table, we can duplicate the table with a DCS by composing the arrays as follows:

17

Al {1}:="FirstName", {2}:="LastName”, {3}:=” DOB”

Contacts A2 {1}:="Is String Var”, {2}:="Is String Var”, {3}:="Is Date”
FirstName A A3 {1}:=False, {2}:=False, {3}:=False
LastName A A4 {1}:=False, {2}:=False, {3}:=False
DoB “g AS {1}:=False, {2}:=False, {3}:=False

A6 {1}:=False, {2}:=False, {3}:=False

Note that a DCS table with a specific name will be created only once. Each DCS must have a unique name.

Create a DCS Table

Based on the above example we are going to see how to create the DCS structure. There are two Developer
Hook methods that are involved in the DCS creation process:

DAX DevHook DCS ViewAdd: Create the arrays.
DAX DevHook_DCS_SetSelection: Fill the arrays with data.

To create the Contacts table as a DCS, we must first edit the method
DAX DevHook DCS ViewAdd.
Method: DAX DevHook DCS ViewAdd
ARRAY TEXT ($SA1l;3)
ARRAY LONGINT (SA2; 3)
ARRAY BOOLEAN (SA3; 3) False by default
ARRAY BOOLEAN ($A4;3) °~ False by default
ARRAY BOOLEAN (SA5;3) ° False by default
ARRAY BOOLEAN (SA6; 3) False by default

set the names of the columns
SA1{1l}:="FirstName"
SA1{2}:="LastName"
SA1{3}:="DOB"

set the data types of the columns
$A2{1}:=Is String Var
SA2{2}:=Is String Var
SA2{3}:=Is Date

Create DCS View named myContacts
$added b:=DAX Dev_DCS AddCustomView ("myContacts";->$SAl;->$A2;->$A3;->SA4;-
>SA5; ->S$A6)

18

The method DAX Dev DCS AddCustomView is a protected component method that is used to add the
composed DCS View into the 4D Ajax Framework structure.

Syntax: DAX_Dev_DCS_AddCustomView

$1 Text DCS Name (Must be a unique name)

$2 Pointer Pointer to a Text array for field names

$3 Pointer Pointer to a Longint array for the field types

$4 Pointer Pointer to a Boolean array for the unique property

$5 Pointer Pointer to a Boolean array for the mandatory property

$6 Pointer Pointer to a Boolean array for the non-enterable property
§7 Pointer Pointer to a Boolean array for the non-modifiable property

At this point the DCS table does not have any data in it yet. It is the developer’s responsibility to supply it
with a set of data. To do this, the developer must compose a data set inside the method
DAX DevHook_DCS _SetSelection.

Method: DAX DevHook DCS SetSelection
Case of
: ($1="myContacts")
ARRAY LONGINT (recIDs_al;O0)
ARRAY TEXT (fNames at;O0)
ARRAY TEXT (1Names_at;O0)
ARRAY DATE (dobs_ad;0)

Populate data into arrays
ALL RECORDS ([Contacts])
SELECTION TO ARRAY ([Contacts];recIDs _al;[Contacts]FirstName; fNames at; [
Contacts]LastName; 1Names at; [Contacts]DOB;dobs ad)

"Set the selection in DAX in the order defined

‘when we created the View
DAX Dev_DCS SetSelection(->reclIDs al;->fNames at;->1Names at;->dobs ad)
End Case

In this method, we are not only populating the data into the fNames_at, INames_at and dobs_ad arrays, we
also need to generate the record id for each row. The record id will be used to identify a specific record
during record modification and deletion. When a query request is made for any DCS record this method
will be executed first to setup the initial selection. This selection will then be queried on with the criteria
posted by the Web request.

This method has one parameter. This parameter contains the name of the requested DCS. In the above
example, the Case-of is set up to check if the name of the requested DCS is “myContacts.” If so, it will
generate the initial selection for the DCS. The same approach will be used for record saving and deleting of
the DCS as well.

IMPORTANT! Only process or inter-process arrays can be used to create a selection in method
DAX DevHook DCS_SetSelection

The last call in the method is DAX Dev_DCS_SetSelection. This method is another protected component
method that should be used specifically in DAX DevHook DCS_SetSelection method.

19

Syntax: DAX_Dev_DCS_AddCustomView

$1 Pointer to a Longint array containing unique record IDs
(Required)
${2 to N} Pointer to array of DCS field data (where N=number of fields) in

DAX DevHook _DCS ViewAdd

Views

Views are the last type of table structure that can be represented in the framework. They are related tables
represented as a single table, and they can be created quite easily in the Client.

Creating a View

Views can be thought of as virtual structures. They can be one-to-one copies of tables in your structure, or
they can contain all fields from many tables in a relationship.

In the 4D Meetings Demo database, the Meetings table is the One table and the Tasks table is the Many
table in a One-to-Many relationship.

To create a View you must first go to the One table in the relationship (in this case, the Meetings table).
Click the ‘New View’ button.

New View Button

Toggle All: Allow access
DDW Buttons \ Views -
None ¥/ New View I E

The current table selection (ie. Meetings table) can be thought of as a starting point. The table you select
from the View pull-down menu (ie. Tasks table) can be thought of as an ending point. Any fields
encompassed between the starting and ending point will be available in the new View.

Select the ending point from the pull-down list, then click the ‘Go’ button.

1) Select Related Table 2) Click Go

A new View will appear at the bottom of the list in the Portlets area.

New View added to bottom of list

167 ¥ Fies Files Table [Grid ~| [None =] New View
7 = S Sync Table | Grid | | None v/ New View | [|
I ,F ¥ View_1 Q [View_1 View :(| None ¥| Meetings ¥ I =t

The View can be modified like any other Selection in the Portlets area. Once you select it, you will see all
the fields this virtual structure.

Below is a screenshot of the fields from a View in the 4D Meetings Demo database, where Meetings is the
One table and Tasks is the Many table.

20

Fields are from Meetings and Tasks table

Properties
Position Real Name DAX Alias
6" o [Meetings]Owner_ID [owner_ID
IF 0O: 2 I: Ij [Meetings]Version iVUSiDn
I P [Tasks|Task_ID frask_ID
IF O: v I: 2 [Tasks]Name |Mme
|2T 0O: v I: ij [Tasks]Assigned_To !Assign(-d,To

CHAPTER 7: CALLBACKS

Callbacks are like form events in 4D. They allow for the developer to make certain actions to take place when a
particular event occurs. A typical use of a callback would be to perform some type of data manipulation in a field. In
the 4DAF the back-end callback can be triggered by two events: On Load and On Data Change. Note that the
callback execution will happen at the field level only and it is supported from within the input layout only.

Developers should use the method DAX_DevHook CB_Install to install all programmatic callbacks, and
DAX DevHook_CB_EventFired to handle all callback events.

DAX DevHook_CB_Install is executed at database startup. Within this method, the developer calls the method
DAX Dev_CB Install to enable an event for a specific field. Here are some installation examples:

Method: DAX DevHook CB Install
DAX Dev_CB Install(On Load;”Invoices”;”ID”) °~ [Invoices]ID
DAX Dev_CB Install(On Load;”Customers”;”Name”) " [Customers]Name
DAX Dev_CB Install(On Data Change;”Customers”;”Prefix”) =~ [Customers]Prefix

To handle a callback, the developer must implement a trap inside the method named
DAX DevHook CB_EventFired. This method will be triggered for every callback event. The developer is
responsible for handling each event for each field via their own custom code. The following is the information that
is available to the developer within this hook:
* Event that has fired
* Name of the selection that is being edited
* ID of the selection that is being edited
* Name of the field that is being edited
* ID of the field that is being edited
¢ Current value for the field that is being edited
* Record number that is being edited
This information can be obtained by calling the method DAX Dev CB_GetInfo. Here is an example:
Method: DAX DevHook CB EventFired
$eventID 1:=Num(DAX Dev_CB GetInfo("event id"))
$selectlonName t:=DAX Dev CB GetInfo("selection name")
$selectlonID 1 :=Num (DAX Dev CB GetInfo("selection id"))
S fieldName t: —DAX_DeV_CB_GetInfo ("field name")
$fieldID 1:=Num(DAX Dev_CB GetInfo("field id"))

$f1eldValue t:=DAX Dev _ CB GetInfo("fleld value")
$recordID 1: —Num(DAX Dev CB GetInfo("record id"™))

21

This information can be used to determine what would be the appropriate action for the given callback. The
following is example code based on the callbacks that we installed in the method DAX DevHook CB_Install.

Method: DAX DevHook CB EventFired

Case of
(SeventID 1=On Load)
Case of
(SselectionName t="Invoices”)
If (SrecordID 1=New record) & (SfieldName t="ID")
Perform Data Manipulation here
End if
($selectionName_t:"Customers”)
If (SrecordID l#New record) & ($SfieldName t="Name”)
Perform Data Manipulation here
End if
End case

DAX Dev_CB_SetStatus (1)

(SeventID 1=On Data Change)
Case of
($selectionName t="Customers”)
If ($fieldName t="Prefix”)
Perform Data Manipulation here
End if
End case
DAX Dev_CB_SetStatus(1)

End case

The developer can manipulate the data in any of the fields in the input layout. This is done by calling the method
DAX Dev_CB_SetFieldValues. This method takes two parameters: a pointer to a Text array containing field names

and a pointer to a Text array containing field values. Here is an example based on the callbacks that we installed in
the method DAX DevHook CB_Install.

Case of
(SeventID 1=On Load)
Case of
($selectionName t="Invoices”)
If (SrecordID l=New record) & ($fieldName t="1ID")
ARRAY TEXT (SfieldNames at;1)
ARRAY TEXT (S$fieldValues at;1)
$fieldNames at{l}:=$fieldName t
$fieldvValues at{l}:=Sequence number ([Invoices])
DAX Dev CB SetFieldValues(->$fieldNames at;->S$fieldValues at)
End if
(SselectionName_t=”Customers”)
If (SrecordID l#New record) & ($fieldName t="Name”)
ARRAY TEXT (SfieldNames at;1)
ARRAY TEXT (SfieldValues at;1)
$fieldNames at{l}:=$fieldName t
$fieldvalues at{l}:=Uppercase(S$fieldValue t)
DAX Dev CB SetFieldValues(->$fieldNames at;->$fieldValues at)
End if
End case

DAX Dev CB SetStatus(1l)

(SeventID 1=On Data Change)
Case of

($selectionName_t:"Customers")
If (SfieldName t="Prefix”)
ARRAY TEXT (SfieldNames_at;1)

22

ARRAY TEXT (SfieldValues at;1)
$fieldNames at{l}:="Sex”
If ($fieldValue_t:"Mr.")
$fieldvalues at{l}:="Male”

Else
$fieldvalues at{l}:="Female”
End if
DAX Dev CB SetFieldValues(->$fieldNames at;->S$fieldValues at)
End if
End case

DAX Dev CB SetStatus(1l)
End case
Callback status is set in the method DAX Dev_CB_SetStatus. This method tells the Web front-end whether the
callback execution is successful or not. A failed callback is indicated by changing the background color (Yellow) of
the field that triggered the callback.
DAX Dev_CB_SetStatus(1) — Success
DAX Dev_CB_SetStatus(0) — Fail

Along with the method DAX Dev_CB_SetStatus, the developer can add a meaningful message to the front-end by
calling the method DAX Dev_CB_SetMessage. For example:

DAX Dev CB SetStatus(0) ° Callback fail
DAX Dev CB SetMessage ("Invalid Zip Code") °~ Give the reason why

CONCLUSION

This session introduces several key concepts employed by the 4D Ajax Framework. The developer was guided from
the stage of installation all the way through to the development of their own custom pages. The hands-on demos
should provide the developer with a solid foundation and the necessary tools for Ajax development with the 4D
Ajax Framework.

DEMOS

Here are the demos for this session:

Demo 1: Install the Framework

o Set the port to 8080
o Connect to http://localhost:8080 in your web browser
o Copy the contents of Webfolder from Session into your Webfolder

This demo is to get comfortable with the installation process. Instructions can be found in document
“4DAF Install & Upgrade”.

Demo 2: Install Firebug to Firefox

23

o Firebug:

o www.getfirebug.com

o Firefox:

o www.getfirefox.com

This is a good demo to get everyone ready to go with Firebug. Firebug plays a big role in web
development and it will play a big role in the demos that follow.

Demo 3: The Firebug Console

o Connect to localhost:8080/index.html in Firefox.
o Login to the framework with:
o A valid user (Administrator, no password)
o Anunknown user
o Use Firebug to find out what XML information is returned.

This demo gets the developer more familiar with the Firebug interface. They will be introduced to
the Console and will inspect XML responses via Firebug.

Demo 4: Create a DCS

o Follow the structure of this table:

My Contacts
First Mame R
Last Mame ﬂ;

Email #

o Hints:

o Dax DevHook DCS ViewAdd: To create the arrays.

o Dax DevHook DCS SetSelection: To populate the array with data.

o Use ‘First Name, Last Name, and Email’ fields from the [Contacts] table.
Here 4DAF data structures have been introduced. There are three types of 4DAF data structures:
1) Tables, 2) Developer Created Selections, and 3) Views. Developer Created Selections (DCS)
are essentially arrays that are built by the developer and then populated with data from the existing
tables in the structure. This example asks the developer to build their first DCS. This is the first
time that the developer is introduced to a Developer Hook, and they will need to use two (2) to

fully create a DCS.

Demo 5: Create a View

o Create a View using the tables [Contacts] and [Company].
o Hint

o Start from the ‘One’ table.

24

o Extra Credit:
o Display the View as a Data Tree
In this demo the developer is asked to create the last type of 4DAF data structure, the View. This
is much easier than the previous example since Views can be created via the Client. DCS’s, on the

other hand, are created programmatically via (2) Developer Hooks.

Demo 6a: Login

o Use Developer Hook Dax DevHook Login to have a user named ‘Guest’ with password ‘4d’ log
in to the page.

o 2) Create a new 4D user. Login with that user.
This demo introduces the developers to their first 4DAF JavaScript method, dax_login. Here, they are
experimenting with the different ways they can validate a user (4D User and Groups, or their own password

using Developer Hook Dax DevHook Login).

Demo 6b: Login advanced

o Do not call dax_login() during the OnClick of the submit button. Instead, call your own function
which will make the dax_login() call.

o Extra Credit:
o Hide the input form on successful login.
By the request of many developers, here is an example where log in is not directly hard-coded onto the
page. This example takes input from the user, and then calls the dax_login function after the click of the

submit button.

Demo 7: Embed Data Grid
o Embed it within the “GridDiv”’ <div>

o Explore other possibilities:
o Lock 1 left column.
o Float the grid in a window instead of embedding it on the page.
o Create multiple header rows.
o Disable the Control Column.
o Hint: Enter this code within dax_loginSuccess
With the log in procedure taken care of, the developer should have enough know-how to handle embedding
a Data Grid to the HTML page (with the help of the Data Grid API at hand). Here they explore the API and

see how easily it is (2 lines of JavaScript code) to embed one of their own tables to a custom page.

Demo 8: Preset Queries

o Use the Query Manager to create query tabs for the Contacts table.
o Make tabs so that the First Name field is organized in alphabetical order.
o Embed the Contacts table on the page within the ‘GridDiv’ <div>.

o Try displaying the Preset Queries in the Sidebar and then as Tabs.

25

Preset Queries are a great way to present and organize information for the end user once they see a Data
Grid. Here, the developer defines the Preset Queries in the 4DAF Client and then uses the Data Grid API to
display the queries as Tabs or in the Sidebar.

Demo 9: Drag Drop Grid
o Modify ‘Exercise_9.html’ so that:

o The background color for CSS class ‘dragdrop_style’ is set to green.

o All rows and columns are draggable (instead of just the 2nd column).

o Extra Credit:

o Display an Alert message when a cell is dropped into a target area. Make sure the Alert
displays the row, column, and value of the original cell and its target destination

This example may be a bit robust for beginners, but it’s simple enough to for them to analyze should they
need more time outside the session. They start out with a working Drag and Drop example and are asked to
make slight modifications.

CREDITS

Some material can be credited to:

* Joe Resuello’s 4D Summit 2007 Conference Session “Ajax Primer”

* Add Komoncharoensiri’s 4D Summit 2007 Conference Session “Developer Hooks for 4D Ajax
Framework”

* The 4D Ajax Framework Admin Ref

26

