
 1

INTRODUCTION

An index for a table is data organization that enables certain quires to access one or more records of that table fast.
Proper using of indexes is therefore essential to high performance. Improper selection of indexes can lead to the
following mishaps.

• Indexes that are maintained but never used

• Fields that are scanned in order to return a single record

• Multitable joins that run on for hours because the wrong indexes are present

When a query is initiated without an index, 4D starts at the beginning of the table being queried and examines each
record sequentially, one by one. When querying with an index, the index structure is typically traversed first –
potentially skipping many records – then 4D returns the matching records.

The following figure shows the place of indexes in the architecture of a typical database system.

Indexes are provided from 4D. 4D organizes the access to data in memory and, for clustering indexes, also organizes
the layout of data on the disk. Indexes are tightly integrated with the concurrency control mechanisms. They are
heavily used by the query processor during the query optimization.

Index is a data structure built on certain architecture. The most common index architectures are “Clustered” and
“Non-Clustered”.

A non-clustered index contains references or points to a blocks that contains the row data for which the index has
been constructed. Depending of the size of the rows, it may hold several other rows. The logical order of the index

Query processor

Storage subsystem
Indexes

Concurrency control

Recovery

Operating system

Hardware (processor, disk, memory)

4 D S U M M I T C O N F E R E N C E 2 0 0 8

I n d e x i n g

Presented by: Atanas Atanassov

 2

does not match the physical stored order of the row on disk. The leaf nodes contain the row of the index. The
clustered index architecture is base on “Clustering” or re-orders the data block in the same order as the index.
Therefore a table can have only one clustered index.

BENEFITS AND LIMITATIONS OF USING INDEXES

The main benefit of using indexes is speeding up the process of retrieving data form a database.

For example:

Let say we have a table named “People” with two fields for “First” and “Last” name and we are searching for “John
Smith”.

Query ([People];[People]Last=”Smith”;*)
Query([People];&;[People]First=”John”)

In this query the database will start looking into the “Last” field in every row on the table (This is called “Full table
scan”). Then it will do the same within the new selection and will search sequentially every record inside the
selection for first name equals “John”. If there is a B-tree index setup on “Last” field, the database engine simply
follows the B-tree structure to find the requested value.

Example:

If we add one more field named “Email” in our “People” table, and setup a B-tree index on this field. Consider the
following expression.

Query ([People];[People]Email=”@yahoo.com”)

This query will return all people which email address ends up with “yahoo.com”, but even the fact that the “Email”
field has B-tree index setup; the database will perform sequential search or full table scan. This is because the index
keys are built with assumption that words go from left to right. With a wildcard at the beginning of the search, the
database will be unable to traverse the B-tree index.

Other limitation of the indexes is when too many indexes are added to the database or new records are added to the
database. The size of the index file grows. This can result in indexes taking up quite a bit of space. Using too many
indexes can actually slow your database; each time a record is updated or removed, the index also has to be updated.
This is one of the trade-offs between performance and record maintenance.

 3

Indexes key types

A key of an index is a set or sequence of attributes. Index search use values on those attributes to access
records. Many records in the Many table can have the same key values. There are three types of index keys:

• A sequential key; this when the last record inserted into the table has the highest value.

• A nonsequential key; the value of this type of key is not related to the table order. Let’s say SSN of the
last person added to a table with indexed field SSN will not be the highest SSN.

• An unique key; the value of this key is unique for the indexed field. Unique keys are used in One table
in One to Many and One to One relations.

When is not acceptable to use indexes

If the indexes are not use in proper way it may lead to poor database performance, problems with the
structure and the data file, quickly run out from disk space and crashing. In order to avoid these pitfalls, the
developer has to do some analyses of the database and the reason to apply indexes on the table’s fields. One
good effort will be to optimize the query without using an index or use the right index for different type of
queries. There is some guidance when to avoid using indexes;

• Problems with the structure file: When you have structure problems with your database, try to fix the
problems prior adding index to a field otherwise the problems will persist and speed up your queries
won’t solve them. Most of the time adding indexes to database with structure problems will make the
problems worst.

• Fragmented data file: Prior adding index to a table compact your data file and indexes. In this way the
index will be checked and compacted. Applying index on fragmented data file will results in creation
of new index pages, half full index pages and poor performance. This also will affect the update and
maintenance of the data file.

• Not enough disk and memory space: Adding indexes to a database increase the physical size of the
database. Also, every call to the indexed field will load the index pages into the memory. As a result
this might slow overall performance of the system.

• Frequent changes of the database structure during the development process: During the development
process 4D developer has to focus on building the database. Later on, when testing the structure, the
developer should try to find which queries are slow and try to increase the speed by using indexes.

• Redundant fields: If you apply indexes to redundant field (two fields on the same table of different
tables with the same data), this will affect the performance of the machine. One possible solution is to
normalize the database (Normal form 2).

• Avoid applying indexes on small tables.

Index opt imizat ion t ips

• Limit the number of indexes per table. Indexes increase the time it takes to perform Insert, Update and
Delete, so try to limit the number of indexes. If you have read-only table, the number of indexes can
increase.

• Keep the indexes as narrow as possible. This will reduce the size of the index files by compressing the

index files. At this point the index architecture will be rebuilt. In this way you reduce the number of
reads required to read the index and frees you stack memory

 4

• Try creating indexes on integer field. Numeric field are search faster then text fields. For example:
instead perform query on city field, do the same query on Zip Code. The search will be faster and
result will be more accurate (Some cities have more than one zip code for different areas).

• The order of the index fields in the composite index is very important. Fields with high selectivity are

query after the fields with low selectivity. Cluster index first

• Cluster index is more desirable if you need to select by the range of values or you need to sort results
set with ORDER BY or working with sets. On the other hand, regular btree index is better for field
where you need to perform some math operations like SUM, MAX, . Etc. You need to add or compare
any single value in that field.

WHAT IS NEW IN 4D V11 SQL

This section covers some of the new implementation in Version 11 related to indexes. These changes were made
because new indexes have been introduced in v 11, and the way how 4D manages those new indexes. The number of
index keys per table is increased from 16 Mln. to 128 Bln.

With 4D v11 SQL, the index structure and index fields are separated from the database file in two different files:

[database_name].4DINDY is the structure file
[database_name].4DINDX is the data index
All database indexes are now stored in these two external files which are automatically placed next to the structure.
They must not be renamed or moved; otherwise, 4D will have to create them again. One of the main benefits is if the
index becomes corrupted, it is possible to physically remove the files. Next time when 4D starts, it will create both
files. Once these files are created the database engine takes care of updating the index structure. Index keys are no
longer loaded with the record they belong to unless referenced by 4D. This new approach 4D v11 SQL uses specific
temporary memory that is devoted for indexing and sorting operation. This temporary memory is different than the
memory used from the database. Indexes are stored in cache memory. 4D sets the “cache priority” for different
objects in the memory likes, records, indexes, index address tables and so on. The weight allocated for an object is
increased in proportion to the times the object is accessed by the code thus the priority can change. In v11, and index
has higher priority than a record. Every time when this record is accessed add weight to the record’s priority and this
may lead to having higher priority than the little accessed index. At this point the index could be removed from the
cache before the record.

Some commands were depreciated in Version 11 and some were changed to reflect the new index implementation.
Commands like: SEARCH BY INDEX and SORT BY INDEX are depreciated in v11. There are commands like
QUERY BY FORMULA, QUERY SELECTION BY FORMULA and APPLY TO SELECTION which were
changed to support the new technology. With v 11, 4D developer can manage indexes dynamically by using the
commands CREATE INDEX, DELETE INDEX and SET INDEX. With help of the MCI API now, it is very easy
to check the integrity of index files.

All of this will increase the overall performance on your database; also the database will be immunized from index
related errors.

AVAILABLE INDEXES IN 4D V11 SQL

In previous version of 4D only the B-tree was available as on option to speed up the performance of a database. In
v11 were introduced three new types of indexes. Cluster pointing to an array or a bitmap, Composite and Keyword
index:

B-tree index

The first indexing type is B-tree index. A B-tree is a balanced whose leafs contains sequence of key-pointer
pairs. The keys are stored by values. The architecture of this index is as follows. Record Identifiers, such an
ID field, populate and ordered set of elements, called nodes. These nodes are connected by pointers to each
other in such a way that there is a single node that has no pointers to it - called the root note – and each

 5

subsequent node underneath the root either contains key values associated with the field that is indexed and
pointers to more nodes, or just the key values with no pointers. The image below illustrates this concept:

 6

Defini t ions:

Node\Page: The elements that the tree is built with. A node contains keys and pointer to a child
node.

Subtree: A subset of nodes within the main tree that contains a node and all the nodes underneath
it. In the picture above, the node that contains keys 3 and 4 can be seen as the root of a subtree
that has 2 child nodes.

Root: The top-most node. It is the only node without a parent.

Child node: Every node has 0 or more child nodes, which are below it in the tree.

Leaf node: Nodes at the bottom most level of the tree. They don't have any children.

Parent node: A node that has children. A child node has at most one parent.

Height: This is the length of the longest downward path from a node to a leaf.

Height of the tree: The height of the root. Every tree has height h. In the example, h = 3.

Depth of the node/Root path: length of the path from the node to its root.

Inner node/Subpage: Any node from the tree that has children and is not the root node.

Key: An element inside a node that contains the record’s unique

When you create an index, the database engine allocates a single page or node. This page represents the
root node and remains empty until you insert data in the table. When the root node becomes full, the
optimizer creates leaf nodes (Leaf notes are with one more than elements in the parent node) and moves the
entries from the root node to the newly created leaf nodes and puts pointers to those leaf nodes in the root
node. The indexes are updated immediately; create a record with an indexed field and the index is updated
right away.

When all leaf nodes are at the same depth, the tree is said to be balanced. Every time a record is added or
removed, the tree re-balances itself. This is a property of the B-Tree structure that helps maintain
efficiency. The height will increase as elements are added to the tree, as seen in the coming examples.

The root node and the branch nodes contain key values and pointers to other branches or leafs nodes. Only
leaf nodes contain information about record numbers in the table. So if you were to query a record whose
key was stored in an inner node, that node would point to a leaf that contains information about the record
in question.

Index Select iv i ty:

Index selectivity is a term used to describe the ratio of the number of unique values in a field in the table
versus the total number of records. The B-tree index is very efficient when the index selectivity is equal to
one. So for example, if you have a field, [Cars]ModelID, that has 4 distinct values (BMW, Porsche,
Mercedes and VW), and the table contains 8 records total:

Index Selectivity = = = 0.5

 7

You should create B-Tree indexes on tables where the majority of queries are most likely to return less than
15% of all rows. Beyond that point, a sequential search is more effective. Once the search engine matches
the search value with the key in a node, it can use the pointer to efficiently fetch the corresponding rows
from the table.

Propert ies of the B-tree

Let’s define a B-Tree with a root, ---root[T].

Let n[x] be the number of keys stored in node ‘x’. n[x] is always stored in non-decreasing order:

n1 <= n2 <= …… <=nn[x]

There are upper and lower bounds of the number of keys a node can contain. These bounds depend on the
minimum degree of the B-tree, t.

t determines how many deferent keys are allowed in one node as follows:

Example:

t = 2

Minimum number of keys per node:1

Maximum number of children for this node: 2

Upper limits:

Every node can contain at most 2t-1 keys. We say the node with 2t-1 keys is full. This node will have 2t
children.

Example:

t = 2

maximum number of keys per node: 3

Maximum number of children for this node: 4

le:

t = 2

Minimum number of keys per node:1

Maximum number of children for this node: 2

Upper limits:

Every node can contain at most 2t-1 keys. We say the node with 2t-1 keys is full. This node will have 2t
children.

Example:

t = 2

maximum number of keys per node: 3

Maximum number of children for this node: 4

 8

Every internal node contains n[x] + 1 pointers p1, p2, …..,pn[x+1] to its children. Leaf nodes have no
children so their pointers (pi) fields are undefined.

Every leaf has the same depth, which is the tree height h. In other words, the maximum number of access
operations required to reach any leaf is equal to the number of access operations for all other leaves.

Here is an example of how a B-Tree structure is built, assuming t = 2:

t = 2

minimum number of keys per node: 1

maximum number of children with 1 key: 2.

maximum number of keys per node: 3

maximum number of children with 3 keys: 4

Every internal node contains n[x] + 1 pointers p1, p2, …..,pn[x+1] to its children. Leaf nodes have no
children so their pointers (pi) fields are undefined.

Every leaf has the same depth, which is the tree height h. In other words, the maximum number of access
operations required to reach any leaf is equal to the number of access operations for all other leaves.

Here is an example of how a B-Tree structure is built, assuming t = 2:

t = 2

minimum number of keys per node: 1

maximum number of children with 1 key: 2.

maximum number of keys per node: 3

maximum number of children with 3 keys: 4

Let say we have the following thirty-one keys:

1,3,5,6,7,8,16, 17, 20, 30, 32, 39, 40, 42, 48, 50, 51, 55, 60, 61, 64, 70, 71, 75, 80, 83, 86, 90, 91, 95 and 99

This is what the tree will look like after all the keys have been inserted:

 9

B-Trees have substantial advantages over other methods when access time to the node exceeds access time
within nodes. This usually occurs when most nodes are in the secondary storage. For example, if you have
nodes with a fairly small number of keys loaded into memory, the search inside these nodes will be very
fast. However, each time these nodes reference a record stored on disk, the disk will be accessed. It is
more desirable to send one request to the disk for a lot of data instead of many requests to the disk for a
little data at a time. This is accomplished by having many child nodes per node; in other words increase the
size of t. In this situation, maximizing the number of child nodes within each internal node, the height of
the tree decreases, balancing occurs less often, and the efficiently increases. For most indexing types in 4D,
the value of t is equal to 256. For Alpha and composite indexes, t = 128. B-tree index support many
different queries types. If range queries (e.g. find something between X and Y) or extreme queries (e.g.
Min or Max) occurs frequently, then this type of index is useful.

In 4D, a B-tree index has 256 keys per page. In other words, t=256. In our example where we have 5
million records, that leaves us with 19532 pages.

Will this number of pages slow down our query?

Index Page

Sub Page

Blue, N

Sub Page

Blue, P

Sub Page Sub Page

Yellow

Index Page 1

Blue 1 Blue 2 …
.
-.

Blue, N-1

Index Page 2

Blue, N+1

Blue, P-1

Index Page

Index Page 257

 10

Now that we have seen how a B-Tree structure is built, let’s see how it behaves in 4D. Here is an image of the
database structure that will be used in these examples.

Query Cars[Model ID] Without an Index

First we will execute a query on one field, [Cars]ModelID. We will not use an index on it for our first run.
The Cars table has 5,000,000 records in it with four distinct values: “Mercedes”,”BMW”,”VW” and
“Porche”. Let’s look for just BMWs using the following code:

Our results return 833,333 records:

`The alert will return how many milliseconds it takes to perform the
`Query
t:=Milliseconds
Query([Cars];[Cars]ModelID=”BMW”)
Alert(String(Millieconds-t)

 11

And our alert reads that it takes over 42 seconds to find them!

This long search time is not completely unexpected; 4D searched each record –one by one- in the Cars
table for records that matched our query condition.

Query Cars[Model ID] With a B-Tree Index

Now we are going to repeat the same query but this time uses a B-tree index. In order to enable the index,
go to the field in the Structure view and select the appropriate indexing type in the Index section:

 12

The field name goes bold in the structure to indicate that there is an index on the field. Also note that 4D
builds the index file, which may take some time if the table is large. For this particular table, building the
index file took a few seconds. The following progress bar is displayed when the index is being built.

Before executing the query, let’s step back to make an educated guess on the results. The success of this B-
tree index depends on the index selectivity. Remember, selectivity is defined as the number of unique
records divided by the total number of records. In the case of the ModelID field, that is:

4 / 5 Million = 8E-6 (or 0.00000008)

The B-Tree index performs optimally when the selectivity is close to 1, which we are quite far from. How
do you think the query performance will behave now? Once the index is created, we execute the same
query from the previous section with the following results:

833,333 records found in 268 milliseconds – a huge improvement over 40 seconds! However, as
mentioned earlier, this has come at the cost of an increased database size: The index file, INDX, is now
172 MB:

 13

Furthermore, our selectivity was much lower than 1, despite the performance gain. This may lead you to
believe that there still may be a better way to index this field. We will get back to that in a bit.

The Query Path and Query Plan

Before we move on, let’s take a side step to examine exactly what happened during the query.

Following the diagram above shows how a query lives and dies from inception to execution.

In the first step, the query is written in the 4D Method editor. It is then passed to the appropriate query
analyzer (4D syntax is passed to the 4D analyzer, ODBC and SQL syntax is passed to the SQL analyzer).
The query is optimized and the plan is created. Last, the query executes.

There are two pieces of information that developers can glean from this: The query path and the query
plan. A query’s plan and path are analogous to what a road trip might be like Most of the time, a query’s

 14

path will be identical to its plan. However, 4D might implement dynamic optimizations during the actual
query while it is being executed to improve performance. This is typically caused when there are few
enough records so that performing a sequential search is faster than using the index, even when the
optimizer initially plans to use the index.

There are three commands available for use to inspect the query path and plan:

GET LAST QUERY PLAN – This command returns the plan that the optimizer has created for the query
being analyzed.

GET LAST QUERY PATH – This command returns the actual query path taken.

DESCRIBES QUERY EXECUTION – This turns query analysis mode on and off. When query analysis
mode is on, you can use the above two commands to return the path and plan. Query analysis mode can
potentially slow down your application, so be sure to only leave it on when debugging. Try not to include
this command in compiled database as well.

The query that we used in the previous example is inserted into the method below:

C_INTEGER($docref)
`Turn on query analysis mode.
DESCRIBE QUERY EXECUTION(True)
 `Our query for BMW cars
t:=Milliseconds
QUERY([Cars];[Cars]ModelID="BMW")
ALERT(String(Milliseconds-t))
`Save the query plan and path to text variables and then write their
`values to a document.
$tQPlan:=Get Last Query Plan(Description in Text Format)
$tQPath:=Get Last Query Path(Description in Text Format)
$docref:=Append document("test.txt")
SEND PACKET($docref;"Query Plan"+Char(13))
SEND PACKET($docref;$tQPlan)
SEND PACKET($docref;"Query Path"+Char(13))
SEND PACKET($docref;$tQPath)
SEND PACKET($docref;Char(13)) CLOSE DOCUMENT($docref)

`Turn off query analysis mode.
DESCRIBE QUERY EXECUTION(False)

 15

The results of using the commands GET LAST QUERY PATH and GET LAST QUERY PLAN are
printed below. Though printed within this document, they look almost identical when written to a text file.
The instructor will demonstrate how this works. The important thing to know is what information is
returned to the developer.

With the index turned off, this is what the query plan and path look like in the text file. Notice that the
number of records and the search time are printed out.

Query Plan

Cars.ModelID = BMW

Query Path

Cars.ModelID = BMW (833333 records found in 55400 ms)

With the index turned on, this is the query plan and path:

Query Plan

[index : Cars.ModelID] = BMW

Query Path

 [index : Cars.ModelID] = BMW (833333 records found in 254 ms)

Note that the use of the index is denoted by the “index” that proceeds the table and field name in both the
path and the plan. Whether you use an index or note, the total number of records and the time it took to
find the records is also printed.

CLUSTER B-TREE

The Cluster B-tree index can improve query performance in many cases where B-tree indexes are ineffective.
Specifically, this index is best suited for columns that contain many records and relatively few unique values. A
field that contains a short list such as a color is good examples of when the Cluster B-tree index outperforms the B-
tree search. Structurally, the heart of the Cluster B-Tree is identical to a B-tree: A root node exists that contains
information. If there are more keys than t, other nodes are created. However, this is where the anatomy begins to
differ. Whereas the B-tree could contain many nodes with pointers to more nodes and eventually leaves; the Cluster
B-tree contains nodes that point to arrays or bitmaps. These arrays and bitmaps are the two different kinds of cluster
indexes in 4D.

Cluster B-tree using Arrays

Keys are unique and sorted. Cluster B- Tree indexes contain nodes with search key values and a pointer to
an array of long integers which contain keys that match that record number. The following diagram
illustrates this:

 16

Unlike the index structure of a B-Tree, the search keys are stored in the arrays instead of the nodes. In this
example, there are three unique, sorted keys: Blue, Red and Yellow. In addition to the keys, there are
pointers to long integer arrays containing the record numbers that match the key. For example, Records 1,
3 and 5 in the table contain the value “Blue”.

Cluster B-tree using a Bitmap

The second way is through the use of bitmaps instead of arrays. The size of the map – the number of bits in
a map – is equal to the total number of rows in the table. Each bit in the map corresponds with a row in
table. If the bit is set, in other words “equals 1”, the search key value occurs in that row. When the bit is
not set, the queried value does not exist on that row. The following diagram illustrates this:

Blue Red Yellow

Index Page

Bit Table

1 0 1 0 1 0 1

Bit Table

0 0 0 1 0 0 0 0 0 1 0

Bit Table

0 1 0 0 0 1 0 1 0

Index Page

Blue Red Yellow

1

3

5

….

….

N

4

10

16

….

….

Z

2

6

8

….

….

Y

 17

Using this kind of Cluster B-Tree indexing, you can notice that every single record is represented in each of
the bitmaps. Looking at the Blue bit table, bits 1, 3, 5 and 7 are set so those contain “Blue” in their records.
In the Red table, Bits 4 and 10 are set, so those contain “Red” in their records.

Use of either a Bitmap or Array

So how does 4D decide between using arrays and using a bitmap? A calculation is performed when the
index is built on the field being indexed and 4D chooses the one that requires less space. Here is how it is
calculated.

An element in an array of longints takes up 4 bytes, or 32 bits, of space. A bitmap will be n bits long,
where n is the total number of records in the database.

For example, say you have a table with 1 million records, and only 50 of them contain the value “Yellow.”

To calculate the space required if using an array of longints:

[Number of Matches] x 4 bytes = 50 x 4 = 200 bytes

To calculate the space required if using a bitmap:

[Total records] / 8 bits per byte = 1,000,000 / 8 = 125,000 bytes

So if you have 1 million records, and only 50 of them contain the value “Yellow”, it is less space-expensive
to use an array of longints than it is to use a bitmap. As you can see, it will take quite a few more than 50
records before the size of the array eclipses the size required to create a bitmap. Specifically, it would have
taken more than 31,250 records that contained “Yellow” to make 4D use a bitmap. Following the
calculation for the space required using an array. For example, let’s say we have one more record (31,251)
that contain yellow:

To calculate the space required if using an array of longints:

[Number of Matches] x 4 bytes = 31,251 x 4 = 125,004 bytes

This value and anything above it would cause the space requirement for the array to exceed that of the
bitmap. In this case, 4D would use a bitmap. Note that this is for a per-unique-value basis. The example
demonstrated what would happen to the Yellow values. If Blue or Red contained more than 31,250
matches in the database, they would use a bitmap – in other words, bitmaps and arrays can be used together
in the same index.

Query Cars[ModelID] With a Cluster B-Tree Index

Remember how, in the previous section, it took about 42 seconds to query a field that only had a few
unique values? That test was followed up with a B-tree indexed search that returned the same results in 1
second.

Although that was a vast performance gain, we also noted that the selectivity of the table was 0.0000008.
Optimal performance occurs in a B-tree index query when selectivity equals 1. This indicated that there
may be a more optimal way to query this field despite the reduced query time that the index provided.

Now let’s put the Cluster B-tree to the test. Again, we are going to perform the same query – find all
BMW cars using the following code:

The same 833,333 records are found, but notice the time that that it took – 15 milliseconds, which is an
even more impressive gain than before.

Furthermore, the size of the INDX file is less than 3 megabytes; far less than the 180 megabyte index file
using the B-tree index. Remember this is using the same number of records!

 18

The query path and plan are identical in this query, as well:

Query Plan

[index : Cars.ModelID] = BMW

Query Path

 [index : Cars.ModelID] = BMW (833333 records found in 0 ms)

Zero milliseconds? Why the discrepancy between this and the alert time of 15 milliseconds? Here is the
query printed again:

Remember, GET LAST QUERY PATH returns the time needed for every query criteria to be found.
Compare this to our alert statement, which takes the time acquired right after the query then subtracts the
time right before the query and you can see how there is probably a few millisecond delay setting the
variable, t, to accept the time as well as calling an Alert out.

Let this be a lesson that choosing the right index can dramatically improve the performance of the database.
Between the B-Tree and Cluster B-Tree, selectivity is a good indicator of which index you should use. If
you have a field that contains many unique values such that selectivity is close to 1, use the B-Tree index.
Otherwise, if you only have a field that contains few unique values, use the Cluster B-Tree.

B-trees are still useful!

Despite being outclassed in the previous section, B-trees can perform better than Cluster B-trees under
certain situations. Here is a query that demonstrates this.

RecordNumber has a selectivity of 1. In other words, each value is unique per record.

QUERY([Cars[;[Cars]RecordNumber<4000000)

Here is the query path and plan using a B-Tree index on the field:

Query Plan

[index : Cars.RecordNumber] < 4000000

 19

Query Path

 [index : Cars.RecordNumber] < 4000000 (3999999 records found in 216 ms)

And here is the query path and plan using a Cluster B-tree index:

Query Plan

[index : Cars.RecordNumber] < 4000000

Query Path

 [index : Cars.RecordNumber] < 4000000 (3999999 records found in 270 ms)

The B-Tree performs better in this situation.

COMPOSITE INDEX

Composite indexes combine several fields together and index their values in either a B-tree or Cluster B-tree
structure. Composite indexes are good for sorting especially large selections. It is also good for queries on several
fields where only a small number of records are returned. For example, if you want to do a query on two fields, you
have a choice to do an index search on the first field, then do an index search on the second field and join the two
queries. So let’s say the first search returns one million records, the second search returns five hundred thousand
records and the join between them returns only ten records. With a Composite index, internally the index will go
through the pages which contain the exact match of the keys. If you make a query on multiple fields, regardless of
the field order in the query, 4D will try to find if there are fields associated with a composite index and will give the
composite index priority.

The Composite index reduces the number of queries at the database level and frees you from maintaining compound
fields.

First a query using two separate indexes

In our example first will index “model” field with btree index and “color” field with cluster index. The query is for
blue BMWs as follows:

QUERY([Cars];[Cars]ModelID="BMW";*)
QUERY([Cars]; & ;[Cars]ColorID="Blue")

 20

And here is the path and plan:

Query Plan

[index : Cars.ModelID] = BMW
And
[index : Cars.ColorID] = Blue

Query Path

 AND
 [index : Cars.ModelID] = BMW (833333 records found in 146 ms)
 [index : Cars.ColorID] = Blue (69267 records found in 0 ms)
 --> 69267 records found in 158 ms

First 4D will find all Model equal BMW and join this result will return all colors equal Blue.

Query With a Composite Index

Now we will see the composite index in action. A composite index of type B-tree is placed on the two fields,
ModelID and ColorID. The query stays the same, but here is the path and plan:

Query Plan

[index : ModelID, ColorID] LIKE BMW , Blue

Query Path

[index : ModelID, ColorID] LIKE BMW , Blue (69267 records found in 4 ms)

The same query took only 4 ms!

You can have composite index based on b-tree or based on cluster, both are available in v 11. Composite index is
good for sorting especially in large selection. Also is good for queries on several fields where as a result return small
selection of records.

KEYWORD INDEX

The last indexing type available for use is the keyword index. This type of index is only available for alpha or text
fields. The option in the Inspector is not available when looking at a field of other types.

 21

When an Alpha or Text field is indexed using the Keyword Index, every word inside the field is indexed. It is built
using clusters. This includes short and single-letter words such as “a” and “the”. This obviously impacts the size of
the index file, but the performance gain in queries provides a decent counterpoint to that argument. More on this in
a bit.

You can perform a search on the entire text or alpha field for keywords. This query will be applied to full words
only, and not just a sequence of characters such as “-“, “/”, etc. Note that it is possible to perform a keyword query
without an index, but the query executes much slower when it is performed on a field without the keyword index.

Because of the new keyword search, a new operator, %, has been added that can be used in Query commands.

QUERY ({aTable}{; queryArgument{; *}})
QUERY BY FORMULA ({aTable}{; }{queryFormula})
QUERY SELECTION BY FORMULA (aTable{; queryFormula})

If you use Keyword index together with other available indexes the optimizer will make decision based on the
operator you use.

Here is an example:

As we have seen, the ModelID field contains only a few unique values. We determined that the Cluster B-tree index
was better than the B-tree index.

The field has both the Keyword index and B-Tree index enabled. The size of the INDX file is 172MB.

Using the “=” Operator:

In the method editor, the following query is executed.

QUERY([Cars];[Cars]ModelID="Porche")

How do we know that the B-tree index was used instead of the Keyword index? The following section shows what
it looks like when the Keyword index is used.

Using the “%” Operator:

Now let us execute the same query but use the keyword operator instead:

QUERY([Cars];[Cars]ModelID%"Porche")

 22

Use of the “=” sign forces the query forces the B-Tree index to be used, as seen here in the query’s path and plan:

Query Plan

[index : Cars.ModelID] = “Porche”

Query Path

 [index : Cars.ModelID] = “Porche” (1666667 records found in 450 ms)

This will force the keyword index to be used as shown here:

Query Plan

[index : FullText : Cars.ModelID] = “Porche”

Query Path

[index : FullText : Cars.ModelID] = Porche (1666667 records found in 0 ms)

As you can see, when an Keyword index is used, the path and plan show “index : FullText :”. When any other index
is used, the path and plan just show “index :” Also note that the seek time using the Keyword index is much faster
than using a B-tree index.

Using the “%” Operator on an un-indexed field:

As mentioned earlier, it is still possible to do a keyword search on an Alpha or Text field that does not have the
Keyword index enabled. When taking the index off in the example above and executing the same query, this is the
resulting path and plan:

Query Plan

Cars.ModelID contains Porche

Query Path

Cars.ModelID contains Porche (1666667 records found in 71582 ms)

As you can see, using the index saved us over a minute of processing time. Also note that the other index was not
used, even though it was available. In other words, the keyword search operator, %, can only be used with the
Keyword index or no index at all. So as we have seen, Keyword indexes can speed up searches on Alpha and Text
fields similar to cluster indexes. This was demonstrated above. But let’s take a look at how this behaves on a
grander scale – remember that Keyword indexes really shine when searching within a block of text.

Example:

 The database contains only a single table, [Wiki].

 23

This table contains the full collection of Wikipedia articles as of May 2007, which amounts to over 2.2 million
records. This number itself is hardly stretching the limits of what 4D is capable of holding, but when you consider
that this is 2.2 million complete Wikipedia articles, the magnitude of it all is impressive; it takes a good amount of
disk space to hold this database. The datafile and index alone take up 22 gigabytes of storage.

Perhaps even more impressive is the following demonstration. Inspecting the table, you can notice that the Content
field contains the Keyword index. There are no other indexes in this database. The Content field contains the body
of the Wikipedia articles.

 24

On the main form above, there is one field for users to enter a search. The space below that field is used to display
the article titles for records that contain this word. Here is the code that is executed whenever a character is entered
into this field, marked “Enter a word:”:

If (Form event=On After Keystroke)
 $word:=Get edited text
 If (Length($word)>2)
 If ($word#"")
 $word:=$word+"@"
 QUERY([Wiki];[Wiki]Content%$word)
 Else
 ALL RECORDS([Wiki])
 End if
 $text:=String(Records in selection([Wiki]))+"/"+String(Records in
table([Wiki]))+" Wiki articles"
 SET WINDOW TITLE($text)
 Else
 REDUCE SELECTION([Wiki];0)
 $text:="Wiki articles"
 SET WINDOW TITLE($text)
 End if
End if

 25

Every time a letter is entered into the field, 4D performs a query. Once the index is loaded into cache, the type-
ahead search happens very quickly. The titles in the window space are updated on the fly.

The list of articles in the lower portion of the window all contain the word that was entered! In this example, the
word “chowder” was entered, and double clicking one of the results – Cuisine of New England – brings us to the
body of the article, with the first instance of the word “chowder” highlighted for us:

 26

By pressing the “Words” button, 4D will take a few seconds to build an array using DISTINCT VALUES with ALL
words contained in the articles returned in the query! Again, this act takes only a few seconds to finish executing.
This demonstration should be ample proof that the Keyword index in 4D v11 SQL provides a practical solution for
querying large bodies of text that would have been painstakingly sluggish in 4D 2004.

CONCLUSION

Generally speaking, B-tree indexes work best when selectivity is high. Cluster B-tree indexes work best when
selectivity is low. Keyword indexes work best when searching a Text or Alpha field, and are based on Clusters.
Last, composite indexes index values from multiple fields and can be built on either B-tree or Cluster B-tree
structures. In any case, a thorough developer can check which indexes are being used and which indexes perform
faster on a field using DESCRIBE QUERY EXECUTION and its associated commands. Using these simple facts
and the details in this document as a sample, you should now have a comfortable grasp on the new indexing schemes
and how to put them to use in 4D v11 SQL. Happy, and swift, querying! In the new version 11 there is a new option
called “Rebuild indexes after import “which will saves you time during import of large amount of data.

