

INTRODUCTION

Since Google Maps people are used to maps or satellite picture on their computers. The most noticed example
database of 4D Live Window was the Google Maps mash-up to display a map in a 4D form.

But there is much more possible: display directly customer(s) or shop locations in a map, such as Google Maps or
OpenStreetMap. Display images in a map. Calculate the geographical coordinates based on an address – or find an
address based on coordinates. Geotag images or find locations where a photo was made. Read data from a GPS
device and display it in a map and much more.

SIMPLE MAP

The most simplest way to include a map into a 4D form is to use Web Area in 4D v11 SQL or 4D Live Window in
v2004. Construct an URL using the address – and the map appears.

The visible disadvantage is the "unwanted" area around the map, such as the Google bar, the results on the left side,
or the popup to display the marker.

Constructing the URL is not difficult, but the Geo_Component provides a method to make it even simpler. Call it as:

$url:=Geo_ConvertAddressToGoogleMapsU (tAddress;tcity;tzip;tState;tCountry;15;"en")

Pass the address as parameters, then the zoom level (15 in this example) and the language for the Google interface
(English in this example). Done. With Web Area the result can be directly assigned to the Area URL variable.

GOOGLE MAPS API

Using the Google Maps API we get full control of the area. We can decide to display or hide the zoom level, the
layers (map/satellite/Terrain/etc) and using JavaScript we can add markers, overlays, polygons or react on user
events such as mouse clicks. Because Google Maps API takes heavy usage of JavaScript, it is strongly
recommended to use 4D v11 SQL for this usage. While it is possible with 4D Live Window on Windows, you may
run into crashing problems on Mac OS with 4D Live Window and 4D v2004.

4 D S U M M I T C O N F E R E N C E 2 0 0 8

G I S – G P S – G e o c o d i n g – M a p s a n d
m o r e
Presented by: Thomas Maul, 4D Germany

The following screen is a quite simple usage of Google Maps API, we simply hide everything:

As simple it is, we have maximum usage of our space and can display as much of the map as possible.

Using Google Maps API requires a little bit more work and preparation. First we need a Google Maps API key to
identify our application against Google. The key can be required (for free) at:
http://code.google.com/apis/maps/signup.html

This requires of course the acceptance of the Google Maps API Terms of Use, which should be considered before
embedding Google Maps into your application (see later chapter OpenStreetMap for alternative solution).

Technically the main difference to the first example is that we need to pass geographical coordinates and not simply
an address. Obtaining this coordinates can be done with several approaches. There are tools to lookup an address
(Geocoding) to get the coordinates, they can be read from a GPS device (Geotracking) or as example be embedded
in a photo (GeoTaging, as with the new iPhone). We will see soon several examples how to do that.

Google Maps API allows us to embed a map into a HTML page, but it cannot "exists" on it's own, it must be
included somewhere. This can be a local document, it does not need to be on a real web server. The component
provides a command to create the document on the fly in the temp folder with the correct content and returns the
URL. To allow to have several maps (in the same or different window or processes), we need to provide an unique
ID for each map, which could be by example the web area object name + process number. The map is created on a
specified size, by example the size of the web area object.

$UniqueObjectName := "WebArea1"+String(Current Process)
GET OBJECT RECT(*;"WebArea1";$left;$top;$right;$bottom)
$url:=Geo_CoordinatesToGoogleMapsURL (tlongitude; tlatitude;
 GoogleMapKey;$right-$left;$bottom-$top;15;$UniqueObjectName)

Before we go deeper into Mapping concepts, we discuss how to retrieve the coordinates.

Geocoding using Google Maps API

Google Maps API includes some features to do geocoding. The Terms of Use allows to run up to 15000 geocoding
requests per day, but deny to save/store this informations in the database or to use them for other purposes than to
display on the map. We will also discuss using Open Source systems if you need this.

Similar to the normal Google Maps Web Interface we can pass an address and get the coordinates returned:

Geo_GoogleMapsGeoCoding (tAddress;tcity;tzip;tState;tCountry;->tlongitude;
 ->tlatitude;GoogleMapKey)

While finding the coordinates of an address can be done with a single call, the reverse is a little bit more complex.
For given coordinates we can retrieve the nearest street. To do that we need to display a web area (which can be

invisible), in which a Google Maps object is used with some JavaScript code to retrieve the address. As soon the
address is calculated, the JavaScript code calls 4D to pass the address.

The component provides two methods for this task:

$url:=Geo_GoogleMapsReverseGeoCoding (tlongitude;tlatitude;GoogleMapKey;
 $UniqueObjectName)
WA OPEN URL(*;"WebArea1";$url)

Similar to Geo_CoordinatesToGoogleMapsURL this method returns an URL which will be displayed in a web area.
The web area needs the "On URL Filtering" event enabled and an object method like this:

If (Form event=On URL Filtering)
 $url:=WA Get last filtered URL(*;"WebArea1")
 Geo_GoogleMapsReverseFilter ($url;->tAddress;->tCity;->tZip;->tState;
 ->tCountry)
End if

After the call the address variables contains the closed address to the passed coordinates.

Google Maps API and markers

We know already how to display a map in Google Maps using coordinates. The simple way is to center the map for
the given coordinates. Let's make it more interesting, we want to display some addresses on a map with markers.
Clicking on a marker – or on the record in 4D (!) – should select the marker and show a tip with some informations.
The tip can include a HTML link, which either switch to this address or triggers 4D to show more data in a new 4D
window.

Try it with the demo application. The popup menu on the right upper corner allows to select a customer group (here
some Apple Stores). Clicking on a marker or on the address in the listbox activates the marker and shows a tip inside
the web area. Two addresses don't show a tip – but directly opens a 4D Windows. Some tips contains plain text,
some rich text, some URL's. A URL can change the currently displayed page – or triggers 4D which opens another
window with a web area.

To build such an object we need to pass similar parameters as before, just now arrays as the map can contain several
markers/coordinates. In addition to a longitude and latitude array we need an array with tip content and an array with
direct click URL's.

$url:=Geo_MarkersGoogleMapsURL (->$lon;->$lat;->$label;->$markerurl;
 GoogleMapKey;$right-$left;$bottom-$top;15;$UniqueObjectName)
WA OPEN URL(*;"WebArea1";$url)

The label array can be plain text, such as "my Store" or "Straße" or "4 > 3", 4D handles automatically the character
encoding. Starting the string with char(1) allows to disable the character encoding, which allows us to use HTML
commands, such as char(1)+"bold text"

The array markerurl allows to install a click event trigger. As soon the user clicks on such a marker, the URL is
launched. In some cases this may be the expected result, sometimes you may want to do something totally different.
The Filter concept of web area (in 4D Live Window called navigation event) allows that:

ARRAY TEXT($filters;0)
ARRAY BOOLEAN($AllowDeny;0)
APPEND TO ARRAY($filters;"*") `Select all
APPEND TO ARRAY($AllowDeny;True) `Allow
APPEND TO ARRAY($filters;"*OpenURL*") `Run Object method for this URL..
APPEND TO ARRAY($AllowDeny;False)
APPEND TO ARRAY($filters;"*OpenCust*") `Run Object method for this URL..
APPEND TO ARRAY($AllowDeny;False)
WA SET URL FILTERS(*;"WebArea1";$filters;$AllowDeny)

URL's containing "OpenURL" or "OpenCust" are filtered and the object method is executed.

If (Form event=On URL Filtering)
 $url:=WA Get last filtered URL(*;"WebArea1")
 If ($url="@/OpenCust/@")
 $pos:=Position("/OpenCust/";$url)
 $rest:=Num(Substring($url;$pos+Length("/OpenCust/")))
 GOTO SELECTED RECORD([Test_Address];$rest)
 $p:=New process("Demo_DisplayCustomer";512000;"Demo
 Customer";Record number([Test_Address]))
 End if
End if

This is just an example, we test if the url contains "OpenCust", then expect the record number in the selection
behind the URL and open a new process to display this record. We could also use customer ID, etc. This code is
without error checking, see the example for full code.

But how do select a marker in the map by clicking in the listbox? We use Javascript:

If (Form event=On Clicked)
 $pos:=Find in array(listbox;True;1)
 If ($pos>0)
 $command:="doclick("+String($pos-1)+")"
 WA Execute JavaScript(*;"WebArea1";$command)
 End if
End if

Each marker can be accessed using the index of the array -1 (-1 because in JavaScript an array starts with element 0,
while in 4D with element 1). The JavaScript method "doclick" (you need to write in lowercase because JavaScript is
case sensitive) simulates the user click. This works fully transparent, if you select a customer which triggers back
4D, such as "707 Friars Road" in San Diego in the listbox, 4D will react and open another window. Check the code,
the listbox does not call 4D, it just call JavaScript. The JavaScript code clicks the trigger, which executes the URL,
which triggers the filter, which opens the window…

OPEN SOURCE GEOCODING SERVICES

Commercial gecoding services, such as Google or Yahoo, limits the usage of the received information's, by example
the coordinates are only to be used with the map itself, it is not allowed to store them offline. As long this is not
needed, these services provide excellent information's.

As alternative there are open source/free services, which usually publish their data following the "creative
commons" license. This license is very open (see creativecommons.org).

While this services are easy to access and provide often very detailed information's, specially the Geocoding of
street numbers is poor compared to Google Map API. On the other side, services such as Geonames.org have
detailed data as population, alternative names (localized names for cities) or services as OpenStreetmap return

human readable explanation's helping to select a queried city, such as "town Paris in United States, Texas (which is
about 60km north of town Sulphur Springs)" or doing fuzzy finds as "Restaurants near San Jose, CA"

Geonames.org

Geonames provides a huge amount of Web Services, with very detailed informations. In the example database try
"Open Source Geocoding":

Enter the name of a city, you may want to try the English name or local, such as Venice, Venedig, Venezia…

The information is returned as XML data, which can be passed using the build in XML commands from 4D. The
example database presents them as raw data so you can get an idea about the returned information's. The Popup
menu beside the entry field allows to limit or expand the data (Short/Medium/Full).

There are many options to limit the result, see: http://www.geonames.org/export/geonames-search.html

An example about the usage of this web services is used in the method DemoOpenSource_FormPage of the example
database. The URL can be simply enhanced for a more detailed query.

Geonames also provides a ZIP based Geocoding service:

The Service provides based on ZIP and country the geographical coordinates and some administrative informations.
Again the Web service is HTTP based and simple to call, see method DemoOpenSource_FormPage for an example.
The service is using only the ZIP code and does not allow using the street name for more accurate results.

Other services from Genomes are Reverse Geocoding with a result as ZIP, place or address (US only):

OPENSTREETMAP

From the web site: "OpenStreetMap is a free editable map of the whole world. It is made by people like you.
OpenStreetMap allows you to view, edit and use geographical data in a collaborative way from anywhere on Earth."

Similar to Wikipedia, OpenStreetMap data is collected, entered and edited by "normal people" and extremely fast
growing. People add streets, foot ways and cycle ways by using GPS devices to receive tracks and then vectorize
them. In addition they add street names, restaurants, bus stops, postage boxes, tourist attractions, etc.
OpenStreetMap is becoming very fast a very complex detailed system with information's difficult to find somewhere
else – and totally free. All information's are covered by the creativecommons license! This allows to use maps or
data in commercial applications…

Very active centers are in Europe, such as in UK and Germany, with details such as hiking trails or cycle roads. In
the United States they imported the TIGER data set and got a full coverage of all cities/streets…

Maps can be downloaded in different graphical formats (including SVG) or as raw XML data (nodes with
coordinates). Open Source applications allow converting this data into other formats, such as maps for GPS devices
like Garmin eTrex.

Using OpenStreetMap for Geocoding

Using the raw data behind the maps of OpenStreetMap provides a very powerful search engine, which finds almost
everything – except street numbers. It allows to find for addresses, like "Hanns-Braun-Strasse, Neufahrn,
Deutschland", for places like "Zoo, München" (or Zoo, Munich), for cities in the world (San Jose), or in an area (San
Jose, CA) or even places in that city (Restaurants near San Jose, CA). It knows about places like "LAX" and can
even do reverse geocoding by simply providing the coordinates.
For much more examples see: http://wiki.openstreetmap.org/index.php/Name_finder

The result is returned in XML format, allowing easy access, see the following example:

 

Searching for Zoo, Munich, finds 4 entries. The Zoo itself (which is named for Munich "Tierpark Hellabrunn", the
two main entries (first one in the screen shot) and a small zoo nearby. Each with the coordinates, a name (Flamingo-
Eingang = Flamingo Entry), category (tourism) and a description, which is in HTML format:

gate; zoo Flamingo-Eingang found about 1km south-east of middle of suburb Thalkirchen in München (which is about 4km south-west of city
München [en:Munich] in München, Oberbayern, Bayern, Bundesrepublik Deutschland, Europe)

Using Geocoding/Coordinate 's for f ind customers nearby

Do you want to find all customers in an area, like 20 miles distance to a specific point? You'll find the formula how
to calculate that – and some interesting benchmarks about speed with 4D v11 SQL on our web site:
http://www.4d.com/products/benchmarks/qbf_mono20080624.html

Displaying Maps from OpenStreetMap

This is as simple as with Google Maps, we simply create an URL and display it with Web Area:

$url:="http://www.openstreetmap.org/?lat="+tlatitude+"&lon="+tlongitude
 +"&zoom=14"
WA OPEN URL(*;"WebArea1";$url)

Depending of the zoom level, the map shows more or less details. In close views it displays tourist's information's,
even pubs, which are hidden in higher scales.

Using the JavaScript features of Web Area we can control the display of the map, try clicking the "Hide outside" or
"Hide controls" button. Even when the controls are hidden, you can still drag the map using the mouse – or zoom
using the mouse scroll wheel.

(Tip: to discover the correct <div> ID's to hide/show, etc, a good approach is to use Firefox with installed Firebug
extension, select the HTML tab and click on the <div> entries. Firefox will highlight the area. Also the DOM list
helps.)

OpenStreetMap is using openlayers, so it can be deeply customized (see www.openlayers.org or dev.openlayers.org)

Retr ieving Image from OpenStreetMap

As the OpenStreetMap license allows us to embed maps into our application, printings, etc, it is interesting just to
receive an image of a map. This is supported in various formats (JPEG, PNG, SVG, PDF or Postscript). You can try
the export with the previous example, simply click on Export tab, browse to your home city, zoom in/out and click
the export button.

Of course we can do this also automatically:

$err:=Geo_LoadOSMImage (tLongitude;tlatitude;$meterX;$meterY;tScale;"jpeg";->pImage)

Pass longitude/latitude and the requested size of the image. The size has to be given in Meter (1000 Meter = 1
Kilometer = 0,62 Miles). SizeX and SizeY define the ratio of the image. The size of the returned image is limited

(X+Y < 4000 pixel), with Scale parameter defining the resolution and so the size of the image. If the requested scale
would return a too large image, the command returns as error -1.

GEOTAGGING – COORDINATES IN PHOTOS

Devices with both GPS receiver and camera (like the new iPhone) often include the geographical coordinates in an
image. Services such as Google Picasa or Flickr displays this pictures directly on a map. Applications as Adobe
Photoshop, Apple iPhoto or even the Finder are displaying this information's.

By example a real estate agency could make images of the offered houses using an iPhone (or similar device) and
your software automatically creates the exposé including maps showing the location of the objects:

The example database uses the "Exif_Component" for this task, which itself uses the Open Source Project ExifTool
(GPL License). ExifTool is a command line tool, on Mac available via Terminal, on Windows using DOS Window.
It can be called from 4D using Launch External Process. The component includes the binary as well as the GPL
license. While the component is compiled it also includes the 4D source, so it can be modified if required.

The component provides two functions, Exif_ReadAllTags and Exif_WriteTags. The first one returns two array, one
with all tag names, the other with the corresponding values. These are not just the GPS Tags, all Exif, IPTC, GPS
and other meta information's are returned. Exif_WriteTags allow modifying, adding or deleting one or several tags.
For full documentation see the manual (open the component package to see documentation, ExifTool license and
source).

Open the Exif_Component as 4D database allows to run a test form. Select an image (jpeg or raw) or other medias
(pdf, flash, mpeg, etc). The listbox shows all readable meta data. Many of them are modifiable, simply long click in
the values field to modify an item, such as keywords. Try "Add Tag" or "Remove Tag". The "Shift Time" buttons
include examples how to modify the embedded time stamp, often necessary if a folder with pictures was done with
wrong camera settings (like a wrong time zone).

The following screen shot shows an image with embedded GPS data. The two most important tags (and the only
ones used in the Geo_Component database are GPS Latitude and GPS Longitude. Usually there is also a GPS
Altitude tag. Some Geotagging applications include reverse lookup and directly include fields just as City or
Country.

GPS DEVICES – GPX DOCUMENTS

So far we got coordinates by geocoding. Another typical resource is GPS devices. While this could be a navigation
system, often it is a very small device in the size of an USB Stick which creates a so called "tracklog". This is a list
of time + coordinates saved in regular intervals, as every x seconds or every x meter distance. Some devices (like the
Garmin family) display the tracklog on their screens.

Often the device allows creating "waypoints", a kind of marker of the current position, often with a name or
comments.

Many modern devices, such as the Garmin eTrex Legend, could be connected via USB and can be accessed similar
to an USB Stick. The tracklog can be simply opened as text/xml document via Open Document. The log itself is a
XML document in the GPX format. Older devices or some navigation systems can be accessed with open source
software such as "GPSBabel", which also can convert many formats into GPX (www.Gpsbabel.org, useable as
console application for Mac and Windows, accessible from 4D with LAUNCH EXTERNAL PROCESS).

A 4D application can read the tracklist and by example use the waypoints and assign them to records and/or display
them on a map. It could also parse an image folder and assign images to coordinates, by comparing the time of the
image with the position in the tracklog.

While GPX is a simple format, we provide a component to make the usage even simpler: GPX_Reader

The component provides 3 methods, Geo_GPXGetInfo, Geo_GPXGetTrackpoints and Geo_GPXGetWaypoints.
They pass a document and return the requested content in arrays. See the method comments for documentation. The
method Geo_GPXTest opens a test dialog, helping to analyze the content of documents:

TERMS OF USE AND LICENSES

All maps produced with Google Maps in this document are included as example/demonstration only. You are not
allowed to reuse/reprint them for other purpose (see Google Maps Terms of Use).

JavaScript Code used in the Google Reverse Geocoding example is licensed under the Apache license, see
example/Resources/OpenSourceFiles for details.

All maps produced with OpenStreetMap (www.openstreetmap.org) are under the Creative Commons Attribution-
Share Alike license. You are freely allowed to reuse them following the conditions of the license:
http://wiki.openstreetmap.org/index.php/Attribution

Exif_Component is using ExifTool, an open source console application (using Terminal on Mac, DOS on
Windows). If you use/distribute this component/tool with your application don't forget to add the license agreement
and inform the customer that he can use/distribute this tool following the license. More information's:
http://owl.phy.queensu.ca/~phil/exiftool/index.html

