
 1

AN INTRODUCTION TO SQL

If you have never written a line of SQL, the first thing to do is cast away your trepidation: It’s a simple enough
language to get a grip on the basics. SQL stands for Structured Query Language and is typically pronounced
“S.Q.L.” or “sequel”. It is a language that is used by relational database management systems to access databases,
and create, modify and destroy database objects.

Since the initial release of version 11, 4D developers have had the opportunity to use SQL in 4D. But why would
they want to? The simplest answer boils down to it’s spread: It is accepted as an industry standard language in
RDMS. But don’t fret; SQL’s entry into 4D does not spoil 4D as you know and love it. Rather, it gives you the
flexibility of choice. As the diagram below demonstrates, a query in SQL has the same-level access to the database
engine as does a query in the 4D language; neither takes precedence over the other:

This grants the developer the use of the advantages of the 4D query engine in synergy with the advantages of using
the SQL query engine for more flexibility to access and manipulate their databases than ever before. So without
further adieu, the rest of this document and session4D welcomes you to the world of SQL. We’re happy you’re
choosing our platform to learn the language!

SQL IN 4D

You can write SQL code in any 4D method; it is a very seamless transition to swap between writing 4D and SQL
statements. All you have to do is let 4D know that the next line, or lines, of code is in the SQL language. It is very
much akin to starting and ending a For loop, for example. Sometimes it’s even easier than that. Here are the three
ways we invoke SQL code in 4D:

QUERY BY SQL

This command allows for simple SELECT statements while still retaining the 4D Current Selection
mechanism. In any method, you could implement the following code to look for all Customers from
California. Don’t worry about the details of the code now – it will all be explained over the course of this
document. For now, just be aware that calling QUERY BY SQL tells 4D that a SQL statement sits inside
of the following parentheses.

QUERY BY SQL([Customers];"State='CA'")

`The “regular” SQL equivalent to the above is:
`SELECT * FROM Customers WHERE State = ‘CA’
`

4 D S U M M I T C O N F E R E N C E 2 0 0 8

B e g i n n i n g S Q L

Presented by: Christopher Visaya

 2

`You can also set the query destination. For example:

SET QUERY DESTINATION(Into set ;"set1")
QUERY BY SQL([Customers];"State='CA'")

Begin SQL/End SQL Tags

Full SQL statements can be used in the method editor by enclosing all lines within Begin SQL/End SQL
tags. You can also run multiple lines as long as each separate statement is separated by a semicolon (;).
Note that there is no Current Selection created if running a query this way. Data may be stored in
variables, fields, arrays and tables. Unless otherwise stated below, all of the examples in this document
will store data into a 4D list box. Wherever you choose to store your query results, you will be able to
access it using 4D at that point.

Begin SQL
 SELECT Name FROM Customers INTO <<Column1>>;
 SELECT State FROM Customers INTO :Column2;
End SQL

Execute Immediate

Execute Immediate happens inside Begin SQL/End SQL tags, but there is a huge benefit to querying this
way: You can build your SQL statements programmatically via 4D. In the example below, the table and
destination are both based on the variables $table and $destination. You can come up with any algorithm
prior to executing this snippet that will decide what these variables are set to. Then, when you are ready,
your SQL code will run using the desired values.

$table:=Field name(->[Customers]Name)
$destination:="<<Box1>>"
$sql_qry:="SELECT "+$table+" FROM Customers INTO "+$destination
Begin SQL
 EXECUTE IMMEDIATE :$sql_qry
End SQL

SQL JARGON AND BASICS

Let’s consolidate some verbiage that will be used henceforth:

Rows

A row contains data for a single record which includes all fields in the table. In 4D, a record is equivalent
to a SQL row.

Columns

A column contains data for a specific characteristic of the records. In 4D, a field is equivalent to a SQL
column.

Tables

A table is a collection of rows and columns. This is essentially as non-different from what we have been
calling tables in 4D.

Figure 1.1 shows an example of columns and rows in a table.

 3

Figure 1.1: Illustration of table, column and row.

Comments

Use /* and */ to comment out SQL code within Begin SQL/End SQL tags. You can also comment out the
whole block by using the same comment-signifier in 4D, the back quote (`).

Whitespace

Whitespace is ignored in SQL statements. The following two SQL statements are identical.

SELECT * FROM Customers;

SELECT *
FROM Customers;

Case-Sensit iv i ty

SQL is not case sensitive. It is common practice to write reserved words in all-caps.

Figure 1.2: Basic Customer-Invoice database.

THE SELECT STATEMENT

Now let’s get started using SQL statements! Figure 1.2 shows the structure used in the examples in this document.
The first thing we will take a look at is how to access data from these tables, and the SELECT command is used to
accomplish this. We can use the SELECT statement to make simple requests for a single column or row from a
table, or we can use SELECT to build up a very complex query. When using the SELECT statement, we are doing
the SQL equivalent of using a variation of the QUERY command in 4D. Keep in mind that equivalent
is not identical; the algorithm behind SELECT differs from QUERY, but those details are beyond the scope of this
session.

 4

Figure 1.3: The Customers table.

Select Everything

Figure 1.3 displays a very basic Customers table in the good old fashioned 4D visual representation that we
know. It is comprised of 3 columns (3 fields): Cust_ID, Name and State. You can’t see it now, but there
are 20 rows (20 records) in this table, each representing a different customer. In 4D, if we wanted to select
all of the records and display them, this would be our method:

`Display all Customer records
`
ALL RECORDS([Customers])
DISPLAY SELECTION([Customers])

Not much of a query, but Figure 1.4 shows our result in a default 4D output form.

 5

Figure 1.4: Using 4D to display all Customer records.

The SQL statement to display all records is just about as complex as the 4D statement (as in, it’s not
complex at all), but you will have to become accustomed to the fact that there is no default output form that
is called as is with DISPLAY SELECTION. In the rest of these notes, we will use the Begin SQL/End
SQL tags to write our SQL code and we will put all results into a list box, Box1, unless otherwise noted.
Below is the SQL version to display all records.

`Display all customer records in listbox Box1.
`
Begin SQL
 SELECT * FROM Customers INTO <<Box1>>
End SQL

Code Breakdown

Begin SQL, End SQL – Everything in between these two lines will be evaluated as SQL
code. You will not be able to use any 4D language statements inside these tags, but you can use
4D arithmetic expressions as input parameters.

SELECT – This tells the SQL engine that we will be retrieving data.

* – The star/asterisk is synonymous with “all”. In this case, select all columns from the table.

FROM – This keyword denotes which table to run the query on. Our example uses the Customers
table.

INTO – In 4D we need to store our SQL queries somewhere to display them. In this case, store it
in the list box object, Box1. Remember, this is required because there is no default output when
you run SQL statements. Note the << >> surrounding the object’s variable name. These are
necessary when passing variable values between 4D code and SQL code. You can also precede
the variable name with a colon (i.e. :Box1), but in the interest of being more visually obvious, the
prior style was chosen for this document. If you were to run the code without INTO <<Box1>>
or INTO :Box1, the query would still work, but we would have no visual feedback that it did!

Figure 1.5 displays the results for running the SQL code. The results are on par with the 4D
results. Note that all records are not displayed.

 6

Figure 1.5: Using SQL to display all Customer records.

SELECT specif ic columns

One advantage of using SQL is the ability to limit the number of fields, or columns, to include and display
in your query. For example, let’s say we don’t care about the Cust_ID or State of the customer, we just
want their names. In 4D, your code would look identical to above, but your output form would only
include the fields that you are interested in. Using SQL, we can control this in the query itself as follows:

` Display the names of Customers into the listbox, Box1.
`
Begin SQL
 SELECT Name FROM Customers INTO <<Box1>>
End SQL

Code Breakdown

The only difference in this and the previous example is that we took out the star/asterisk (*). Here,
we are naming a specific column, Name, to display. The other two columns in the table will not
be displayed. Note that there were no changes to the form itself. The 4D list box is handy enough
to add columns accordingly based on the size of the table. This is a neat little feature that is sure
to come in handy if you will be outputting potentially drastically different query results into the
same form. The results are printed in Figure 1.6.

Figure 1.6: Using SQL to show only the Name column of the Customers table.

Using ORDER BY to sort

There will usually be a need to sort query results based on specific situations. For example, a client may
want to quickly browse through a search result and wants the list to be alphabetized. Sorting records is
done in 4D by using the ORDER BY command. The Customers table in the example is already sorted, so
we are going to use another table containing products whose structure is displayed in Figure 1.7. First, we
will use 4D to sort.

 7

Figure 1.7: The Products table.

`Sort all of the products alphabetically by name.
`
ALL RECORDS([Products])
ORDER BY ([Products];[Products]Item)
DISPLAY SELECTION([PRODUCTS])

These results are displayed in Figure 1.8 based on a default output form:

Figure 1.8: Using 4D to sort products alphabetically.

The SQL equivalent is nearly identical, with results that are equivalent to the above:

`
`Query all products and sort them alphabetically. Output to listbox,
`Box1.
`
Begin SQL
 SELECT*FROM Products
 ORDER BY Item INTO <<Box1>>;
End SQL

Code Breakdown

ORDER BY – This tells SQL to sort the results based on the following argument. In our case, it
will sort by the item name. We could have picked any other column to sort by if we wanted.

It is also possible to sort by multiple columns, so let’s try that. Going back to our Customers
table, let’s sort our customers by their State, then by their Names. But let’s get fancy and sort
their names in reverse alphabetical order. Here is the code:

`

 8

`Query all customers and order them by the state they are from
`first, then order them by their name second in reverse.

`4D code:
ALL RECORDS([Customers])
ORDER BY([Customers];[Customers]State;[Customers]Name;<)
DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Name, State FROM Customers
 ORDER BY State, Name DESC INTO <<Box1>>
End SQL

The ORDER BY command is followed by the first sorting parameter followed by the second. As
we can see from the results below, the State column is sorted first, and then each Customer from
California is sorted reverse-alphabetically inside. The DESC keyword that follows Name
accomplishes this. Figure 1.9 shows the results of the SQL variation of the code. From this point
onward, the displayed results will always be from the SQL code unless otherwise noted.

Figure 1.9: Customers ordered by State first, then Name second.

Using WHERE to f ind specif ic records

When querying the Customers table, we may only be interested in looking at the records of all customers in
a specific state. In the Products table, we might only want to see items that cost more than $7.00. We need
some way to set a condition in the query to achieve this. The WHERE clause is used for this very purpose.

 9

In the case of wanting to find customers from a specific state, such as California, we want our output to
look like this:

Figure 1.10: Customers from California.

Here is the code to achieve the results in Figure 1.10.

`
`Find only customers from California.
`
`4D code:
QUERY([Customers];[Customers]State="CA")
DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Name,State FROM Customers
 WHERE State = 'CA' INTO <<Box1>>
End SQL

Code Breakdown

WHERE needs a column and an operator to work. The column in our example is State, and the
operator in this example is the equal sign (=).

At last! We have narrowed down a search. In celebration of this occasion, we may reward
ourselves by taking a look at the other operators available for use with WHERE:

Operator Details
= Equals
<> Not Equal
> Greater Than
< Less Than
>= Greater Than or Equal To
<= Less Than or Equal To
BETWEEN Values within a range
IN Values in a specified subset
LIKE Values that use wildcards
NOT Negates another operator

Let’s try a different operator by querying only products that cost more than my annual salary, $7.00.

 10

`
`Display products that cost more than $7.00
`

`4D code:
QUERY([Products];[Products]Unit_Price>7)
DISPLAY SELECTION([Products])

`SQL code:
Begin SQL
 SELECT Item, Unit_Price FROM Products
 WHERE Unit_Price > 7 INTO <<Box1>>
End SQL

Code Breakdown

The biggest difference to note is that the value operated on in the first example belongs to a field
of type Alpha, and thus needed to be enclosed by single quotes (State = ‘CA’). In the second
example, the value belongs to a field of type Real, and did not need quotes (Unit_Price > 7). This
is a general rule of thumb: Non-numeric values used in WHERE need to be surrounded by single
quotes, numeric values do not. The results for our expensive-item search are on Figure 1.11.

Figure 1.11: Query results for all products greater than $7.00.

BETWEEN, IN, LIKE and NOT

The last four operators are not as obvious to figure out as the rest, and it is worth exploring them a little
more in depth. Here are some quick examples of how to use BETWEEN, IN, LIKE and NOT.

BETWEEN

BETWEEN returns values that exist within a range. This range is defined immediately after the
operator is called.

`
`Display all customers whose names begin with G through M
`
`4D code:
QUERY([Customers];[Customers]Name>"G";*)
QUERY([Customers]; & ;[Customers]Name<"M")
DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Name, State FROM Customers
 WHERE Name BETWEEN 'G' AND 'M'
 INTO <<Box1>>
End SQL

 11

Figure 1.12: Query results for customers whose names begin with G through M.

IN

IN returns values that are included in a specified list. This list follows immediately after IN is
called. The list is comma delimited with each element being surrounded by single quotes. Had
the list been numeric, we would have omitted the quotes.

`Display only the products that have product IDs of FOOD002 and
`FOOD004.

`4D:
QUERY([Products];[Products]Prod_ID="FOOD002";*)
QUERY([Products]; | ;[Products]Prod_ID="FOOD004")
DISPLAY SELECTION([Products])

`SQL:
Begin SQL
 SELECT Prod_ID, Item FROM Products
 WHERE Prod_ID IN ('FOOD002', 'FOOD004')
 INTO <<Box1>>
End SQL

Figure 1.13: Results when searching for only these 2 items.

LIKE

LIKE returns all values that are similar to a value specified by the user. This operator is typically
used in conjunction with the wildcard symbol, %.

`
` Display all products in the Food category.

`4D:
QUERY([Products];[Products]Prod_ID="FOOD@")
DISPLAY SELECTION([Products])

`SQL
Begin SQL
 SELECT Prod_ID, Item FROM Products
 WHERE Prod_ID LIKE 'FOOD%'
 INTO <<Box1>>
End SQL

 12

Figure 1.14: Results for searching for just food-type products.

NOT

The NOT operator returns opposite values from the ones specified in the query. For example, we
can look for products that are not in the food category, or we could look for customers whose
names do not start in the first half of the alphabet. It is important to note the position of NOT in
the WHERE statement.

`Display all customers who are not from California

`4D code:
QUERY([Customers];[Customers]State#"CA")
DISPLAY SELECTION([Customers])

`SQL code: (Note the position of NOT)
Begin SQL
 SELECT Name, State FROM Customers
 WHERE NOT State = 'CA'
 INTO <<Box1>>
End SQL

Figure 1.15: All non-Californian customers.

WHERE and ORDER BY together

It is possible, and common, to use WHERE and ORDER BY together. After all, just because we limit our
search results does not mean that they will come back in the order we desire. Here how to use them
simultaneously. The code is still very simple and straightforward, right?

`
`Display all customers who are not from California, and sort them by
`state in reverse alphabetical order.

`4D:

 13

QUERY([Customers];[Customers]State#"CA")
ORDER BY([Customers];[Customers]State;<)
DISPLAY SELECTION([Customers])

`SQL:
Begin SQL
 SELECT Name, State FROM Customers
 WHERE NOT State = 'CA'
 ORDER BY State DESC
 INTO <<Box1>>
End SQL

Code Breakdown

A few comments about the code: ORDER BY must always happen after WHERE. Figure 1.16
displays our results.

Figure 1.16: Non-Californian customers sorted by reverse alphabetical order by state.

MULTIPLE CONDITIONS USING AND, OR

A realistic situation may call for multiple conditions in a query, such as looking for our oldest customers who come
from the east. Just like 4D, we use the logical operators AND and OR. The implementation is a little different as
seen below.

`Display only food-type products that cost under $7.00 and order them in
`ascending order by cost.

`4D code:
QUERY([Products];[Products]Prod_ID="FOOD@";*)
QUERY([Products];&;[Products]Unit_Price<7)
ORDER BY([Products];[Products]Unit_Price)
DISPLAY SELECTION([Products])

`SQL code:
Begin SQL
 SELECT Prod_ID, Item, Unit_Price FROM Products
 WHERE Prod_ID LIKE 'FOOD%' AND Unit_Price < 7
 ORDER BY Unit_Price
 INTO <<Box1>>
End SQL

Code Breakdown

 14

The code here is straightforward. In the 2nd line of the SQL statement, simply add the logical operator
(AND) and then include another condition. Figure 2.1 shows the results from the query.

Figure 2.1: Food-type products under $7.00

A note about the evaluat ion order of logical operat ions

SQL processes AND operations before OR. Simple queries that only have one or two conditions are
obviously not affected by this. However, more in-depth queries that have more than two conditions could
potentially return unexpected results. Here is an example of how to differentiate between A OR (B AND
C) versus (A OR B) AND C.

`
`Show all customers named Jean, or customers named Brendan from CA
`A OR (B AND C)

`4D code:
QUERY([Customers];[Customers]State="CA";*)
QUERY([Customers]; & ;[Customers]Name="Brendan";*)
QUERY([Customers]; | [Customers]Name="Jean")
DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Cust_ID, Name, State FROM Customers
 WHERE Name = 'Jean' OR Name = 'Brendan'
 AND State = 'CA'
 INTO <<Box1>>
End SQL

Code Breakdown

As you can see above, the SQL code was written as A OR B AND C. Since SQL evaluates the
AND condition first, it is run as A OR (B AND C), note that it does not matter that the OR
condition came first. Figure 2.2 is what we get.

Figure 2.2: A OR (B AND C)

In this next example, we force SQL to evaluate the OR operation first by encapsulating the condition inside
parenthesis. Notice the simplified approach compared to creating sets using 4D.

`
`Show all customers from California who are named Jean or Brendan.
`(A OR B) AND C

`4D code:
QUERY([Customers];[Customers]State="CA")
CREATE SET([Customers];"set1")
QUERY([Customers];[Customers]Name="Jean";*)

 15

QUERY([Customers]; | ;[Customers]Name="Brendan")
CREATE SET([Customers];"set2")
UNION("set1";"set2";"set3")
USE SET("set3")
DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Cust_ID, Name, State FROM Customers
 WHERE (Name = 'Jean' OR Name = 'Brendan')
 AND State = 'CA'
 INTO <<Box1>>
End SQL

Code Breakdown

Though the difference in 4D code is significantly different in the previous two examples, the only
difference in the SQL code is a pair of parenthesis. Surrounding the OR conditional statement in
parenthesis causes SQL to evaluate this operation first, and thus the statement is interpreted as (A
OR B) AND C. Our results are printed below in Figure 2.3.

Figure 2.3: (A OR B) AND C.

OTHER SELECTION TRICKS

It is possible to temporarily create a new column on the fly based on a calculation of current column values.
Furthermore, you can name the column title. It will exist in temporary memory and will not permanently create a
field in your 4D table.

`
`Assume sales tax of 8.25% and display all products’ values at that
`cost.

`4D code:
`In 4D, you could create an output form that includes a field whose
`values contain the calculated values from other fields.
`

`SQL code:
Begin SQL
 SELECT Prod_ID, Item, Unit_Price, Unit_Price * 1.0825 AS With_Tax
 FROM Products
 INTO <<Box1>>
End SQL

Code Breakdown
New columns to contain calculated values

In addition to selecting Prod_ID, Item and Unit_Price, there is another column,
Unit_Price*1.0825. This column is created in memory to display the cost of an item after the
8.25% tax is applied. You can also use addition (+), subtraction (-) and division (/).

Aliases

Since our new column has not been created before, we need to give it a name. As you can see in
the Figure 3.1, the last column is called “With_Tax”. The alias was assigned using the AS

 16

keyword immediately following the calculated value. If we did not include AS, the column would
be labeled “<expression>”.

Figure 3.1: Our temporary column, With_Tax, contains a calculated value.

AGGREGATE FUNCTIONS

Aggregate functions are used to calculate results from multiple records and fields. Below are descriptions of the
most common. Note that they will only be applied to fields that contain non-null values. Also be aware that running
these functions on tables with hundreds of thousands of records gives results about 3 seconds slower than running
the 4D equivalent. On smaller databases, the difference in speed is not noticeable.

Function Description
COUNT() Returns the number of records in the field specified.
SUM() Returns the sum of values in the field specified.
AVG() Returns the average value of data in the field specified.
MAX() Returns the largest out of all values in the field specified.
MIN() Returns the smallest out of all values in the field specified.

COUNT()

Here is an example of how to use COUNT to find the number of all records in the Customers table.

`Count the number of customers

`4D code:
ALL RECORDS([Customers])
$var:=Records in selection([Customers])
ALERT("There are "+String($var)+" customers")

`SQL code:
Begin SQL
 SELECT COUNT(*) AS TotalCustomers FROM Customers
 INTO <<Box1>>
End SQL

Code Breakdown

The above code counts all records from the Customers table, and will return 20, verifying the
statement made early in these notes that we have that many customers.

SUM()

It’s easy to mix up COUNT and SUM in practice. Just remember that COUNT returns a number of
records, while SUM returns a number related to values in the column. In this example, we don’t pass * to
look for all records. Instead, we limit our operation to a single column, Quantity, and total up the number
of units sold.

`Display the total quantity of product FOOD001 sold.

 17

`
`4D:
$sum:=0
QUERY([Invoice_Line];[Invoice_Line]Product_ID="FOOD001")
$sum:=Sum([Invoice_Line]Quantity)
ALERT("There have been "+String($sum)+" FOOD001 items sold.")

`SQL:
Begin SQL
 SELECT SUM(Quantity) AS All_Units FROM Invoice_Line
 WHERE Product_ID = 'FOOD001'
 INTO <<Box1>>
end sql

Code Breakdown

The above code adds up all of the orders for FOOD001 from the Invoice_Line table and returns
64. The other operators work the same way as COUNT and SUM, and making them work are left
to the bright reader.

GROUP BY AND HAVING

One of the last things we will look at for querying data is using GROUP BY and HAVING to further refine our
search results.

Using GROUP BY to sort

GROUP BY causes aggregate functions to be grouped based on columns. Here is an example to show this:

`Show the number of orders for each product
`
Begin SQL
 SELECT Product_ID, SUM(Quantity) AS All_Units
 FROM Invoice_Line
 GROUP BY Product_ID
 INTO <<Box1>>
End SQL

Code Analysis

This SELECT statement uses GROUP BY to show us the total Quantity of each product. Figure
4.1 shows our results.

Figure 4.1: Results grouped by Product_ID.

Using HAVING to f i l ter data

HAVING is used to filter grouped data. It needs to follow GROUP BY in order to do anything. In the
example below, all we are trying to do is to display only states that have more than 1 customer.

`Find the number of customers in each state and display only those
`states with more than 1 customer.

 18

`4D code: Note this will output to a listbox with the correct number of
`columns.

ARRAY STRING(2;$state;0)
ARRAY STRING(2;$newstate;0)
ARRAY INTEGER($count;0)
ARRAY INTEGER($newcount;0)

`Store individual state names into an array, $state.
ALL RECORDS([Customers])
DISTINCT VALUES([Customers]State;$state)
$var:=Size of array($state)

`For each state, count the number of customers.
`If more than 1 customer in the state, copy count and state
`to new arrays, $newcount & $newstate.
For ($i;1;$var)
 QUERY([Customers];[Customers]State=$state{$i})
 INSERT IN ARRAY($count;$i;1)
 $count{$i}:=Records in selection([Customers])
 If ($count{$i}>1)
 APPEND TO ARRAY($newcount;$count{$i})
 APPEND TO ARRAY($newstate;$state{$i})
 End if
End for

`Put the results into columns in a listbox.
COPY ARRAY($newstate;Column1)
COPY ARRAY($newcount;Column2)

`SQL code:
`Begin SQL
 SELECT State, COUNT(Cust_ID) As Customers FROM Customers
 GROUP BY State
 HAVING COUNT(Cust_ID)>1
 INTO <<Box1>>
End SQL

Code Breakdown

There is a big difference between the 4D code and SQL code this time! The simplicity of writing
SQL in this case is obvious – we select the columns from the Customers table, group them by
state, and only display the ones that have more than one customer into the list box as seen in
Figure 4.2.

Figure 4.2: States that have more than 1 customer.

SUBQUERIES

Sometimes we need to search for records based on criteria from a related table. The way we do this in SQL is with
subqueries. Subqueries are queries embedded in queries. In our database structure, we have a number of
relationships that link our 4 tables together. Refer back to Figure 1.2 to refresh your memory. The concept is the
same in SQL in that we can use these relationships to set the criteria on one table for the search in another table.

 19

When would we need to run a subquery? Consider this scenario. We are interested in finding records from the
Invoice_Line table that contain FOOD001, the product code for coffee. The first example shows how ridiculously
easy this is in both 4D and SQL.

`
`Find all invoice lines that are for product code FOOD001
`
`4D Code:
QUERY([Invoice_Line];[Invoice_Line]Product_ID="FOOD001")
DISPLAY SELECTION([Invoice_Line])

`SQL code:
Begin SQL
 SELECT Invoice_ID, Product_ID FROM Invoice_Line
 WHERE Product_ID = 'FOOD001'
 INTO <<Box1>>
End SQL

But this brings up speculative point: What good is this data doing for us? The answer is subjective based on the
context of the situation, of course. But upon further consideration, it may more useful to ask to find all invoices
(instead of just lines on all invoices) that contain orders for FOOD001.

`
`Find all invoices that include orders for product code FOOD001
`
`4D code:
QUERY([Invoice_Line];[Invoice_Line]Product_ID="FOOD001")
RELATE ONE SELECTION([Invoice_Line];[Invoices])
DISPLAY SELECTION([Invoices])

`SQL code:
Begin SQL
 SELECT Invoice_ID FROM Invoices
 WHERE Invoice_ID IN (SELECT Invoice_ID
 FROM Invoice_Line
 WHERE Product_ID = 'FOOD001')
 INTO <<Box1>>
End SQL

Code Breakdown

In 4D, we used RELATE ONE SELECTION to use the query results from Invoice_Line to limit our
selection in Invoices. This was not a huge leap beyond the first example in this section.

The SQL example shows off a subquery. First we SELECT columns to display from the Invoices table.
Our goal is to limit the results to only show invoices that contain FOOD001 invoice lines. So in the
WHERE clause, since we cannot set that condition in the Invoices table, we start a new SELECT in the
Invoice_Line table and thus start the subquery. The English way of interpreting the code is “We are
querying the Invoices table to look for Invoice_IDs that exist in the Invoice_Line table with a value of
‘FOOD001’”. If you look at what’s inside the parentheses, it’s just a simple select statement reprinted here
for clarity:

SELECT Invoice_ID FROM Invoice_Line
WHERE Product_ID = 'FOOD001'

You could write that statement in your sleep. Just remember a few important notes for using subqueries.
The subquery must return a single column. In our case, that was Invoice_ID. The number of values
returned is going to be zero, one, or many. If one is returned, you can check for equality, greater than, not
equal to, etc. If many results are returned, you need to check if a value is IN the returned set.

 20

But wait, our results still may not be good enough. What if we wanted to know which customers have
orders for coffee beans, but do not know the product code? Here now is an even crazier example to
illustrate this:

`
`Find all customers from California or Tennessee who have ordered more than 3
`coffee beans on a single order.
`

`4D code:
`first find the 3 coffee bean orderers
QUERY([Invoice_Line];[Products]Item="Coffee beans";*)
QUERY([Invoice_Line]; & ;[Invoice_Line]Quantity>3)
RELATE ONE SELECTION([Invoice_Line];[Customers])
CREATE SET([Customers];"set1")

`find everyone from CA & TN
QUERY([Customers];[Customers]State="Ca";*)
QUERY([Customers]; | ;[Customers]State="TN")
CREATE SET([Customers];"set2")

`merge the two sets
INTERSECTION("set1";"set2";"subfinal")
USE SET("subfinal")

DISPLAY SELECTION([Customers])

`SQL code:
Begin SQL
 SELECT Name, State, Invoice_ID FROM Customers, Invoices
 WHERE Customers.Cust_ID = Invoices.Cust_ID AND
 Customers.State IN ('CA', 'TN') AND
 Invoices.Invoice_ID IN
 (
 SELECT Invoice_Line.Invoice_ID FROM Invoice_Line
 WHERE Quantity > 3 AND
 Product_ID IN
 (
 SELECT Products.Prod_ID FROM Products
 WHERE Item = 'Coffee Beans'
)
)
 INTO <<Box1>>
End SQL

Code Breakdown

A few things happen here that are worth putting under a magnifying glass:

SELECT Name, State, Invoice_ID FROM Customers, Invoices
WHERE Customers.Cust_ID = Invoices.Cust_ID AND

We are selecting fields from multiple tables, so we need to name those tables in FROM. Each table is
separated by a comma. Our WHERE clause does 2 things. First, we identify which fields tie the two tables
together. In this case the Cust_ID field from Customers is linked to the Cust_ID field from Invoices. This
was necessary because SQL does not automatically include related fields in their queries; it has to be
flagged manually. These lines are followed by a logical AND with:

Customers.State IN ('CA', 'TN') AND
Invoices.Invoice_ID IN

 21

This is a straightforward AND, just to query only customers from California and Tennessee. The second
line invokes our subquery. We use IN instead of “=” because we expect there to be more than one result
returned from the subquery.

(SELECT Invoice_Line.Invoice_ID FROM Invoice_Line
WHERE Quantity > 3 AND
Product_ID IN (SELECT Products.Prod_ID
 FROM Products
 WHERE Item = 'Coffee Beans'))

Sitting inside our subquery is another subquery! It is needed in this case because the criteria we are
revolving our query around, the product name, is 2 tables away from the table we are running our query on.

Looking at the big picture, the deepest level subquery searches for the product, Coffee Beans. The second
level finds where Coffee Beans appear 3 times on an invoice line. The top level query finds the names of
customers that have invoices whose contents include a line representing an order of more than 3 coffee
beans.

Needless to say, subqueries can get messy. But just like any other language out there: Practice, practice,
practice! Or hire someone.

INSERTING RECORDS

Up until now, we have been putting our entire focus into running queries in our databases. Let’s take a brief look
now at modifying actual data. The first command we will look at is the INSERT command. Using this command
allows you to create a record with data for all fields into a table that already exists.

`
`Create a new customer record with Cust_ID = C00021, Name = Raleigh and
`State = ‘TN’
`
`4D code:
CREATE RECORD([Customers])
[Customers]Cust_ID:="C00021"
[Customers]Name:="Raleigh"
[Customers]State:="TN"
SAVE RECORD([Customers])

`SQL code:
Begin SQL
 INSERT INTO Customers (Cust_ID, Name, State)
 VALUES ('C00021', 'Raleigh', 'TN')
End SQL

Code Analysis

In the first line of code, INSERT requires that you list the names of columns that you will be inserting. If
you will be adding a record complete with values for all columns, it is not necessary to list the names. We
did it here for the sake of readability.

The second line of code is where we set the actual values after the VALUE keyword. Be careful when
adding records using INSERT. You will need to have a good knowledge of what fields are in your
structure as well as their types or your data might not be added properly.

Since we are editing data instead of querying it, there is no output for the code above. If you take a look at
your Customer table entries, you will see that the latest entry is indeed Raleigh from Tennessee.

UPDATING RECORDS

 22

The UPDATE statement lets you update fields for any records in the table. There are many instances where this
could come in handy, such as if you needed to do a mass update for similar records. In our case, we’re just going to
update one record. Bear in mind that this command, like any other command where you modify data, could be
potentially damaging. Take extra care to make sure that the condition with which you focus your UPDATE is
correct.

`Update a customer record by changing Raleigh’s name to Chris.
`

`4D Code:
QUERY([Customers];[Customers]Name="Raleigh")
[Customers]Name:="Chris"
SAVE RECORD([Customers])

`SQL Code:
Begin SQL
 UPDATE Customers SET Name = 'Chris'
 WHERE Name = 'Raleigh'
End SQL

Code Breakdown

UPDATE – Signifies that we will be updating an existing record. This statement is followed by SET. As
the name of the keyword implies, this is where we set the new value of the data in the column.

The second line of code sets our condition; we will only update the names of records that have the Name
field set to Raleigh.

Below is a quick example of how you could potentially ruin your data: Everyone from Arkansas will be
graced (or cursed) with my name!

`Change the name of all customers from Arkansas to Chris.
`
`4D Code:
QUERY([Customers];[Customers]State="AR")
[Customers]Name:="Chris"
save record([Customers])

`SQL Code:
Begin SQL
 UPDATE Customers SET Name = 'Chris'
 WHERE State = 'AR'
End SQL

DELETING RECORDS

It goes without saying that this command is destructive by nature. Using it will let you delete one or more records in
a table. Be Careful!

`Delete the entry for Raleigh from the Customers table.
`
`4D Code:
QUERY([Customers];[Customers]Name="Raleigh")
DELETE RECORD([Customers])

`SQL Code:
Begin SQL
 DELETE FROM Customers
 WHERE Name = 'Raleigh'
End SQL

 23

Code Breakdown

Any record that has the value of Raleigh in the Name column will be deleted. As we saw from the previous
example, we only have one Raleigh. But if we applied DELETE to the customers in Arkansas… Well, we
only have one customer from Arkansas too… But if we had more than one…

CREATING A TABLE

It is also possible to programmatically create and edit tables. In order to do that, we use the CREATE TABLE
command. We give the table a name and include columns and column types. Before we do that, please note that the
ability to create tables programmatically has been removed from the 4D language. It used to be included in the 4D
Pack expansion, but the latest version of 4D Pack for 4D v11 does not include these commands.

`Create a table, Suppliers, that includes fields for the suppliers’s
`names as well as the products they specialize in.

Begin SQL
 CREATE TABLE Suppliers
 (S_Name VARCHAR(25),
 S_Specialty VARCHAR(25))
End SQL

Code Breakdown

The first line of code is straightforward: We are creating a Suppliers table. Everything in the parentheses
is fields and their corresponding types. There are other file types out there, including INT, BLOB, TEXT.
In Figure 5.1, you can see the new table.

Figure 5.1: Table created in SQL.

ALTERING A TABLE

The next thing you could do is modify an existing table. This is done with the ALTER TABLE command.

`In the Customers table, add a City column of type Alpha.
`
Begin SQL
 ALTER TABLE Customers
 ADD City VARCHAR(20)
End SQL

 24

Figure 5.2: Using SQL to create the City field.

Code Breakdown

The Customers table is updated to show that it now has a new field, City. This field can be manipulated
just like any other field in 4D and SQL. Figure 5.2 shows our new field in our table. You can start adding
data to this field if you like, or you can remove it if it was a mistake:

`Remove the City column from the Customers table.

Begin SQL
 ALTER TABLE Customers
 DROP City
End SQL

Code Breakdown

Using the DROP keyword in conjunction with ALTER TABLE, the City column is now removed from the
Customers table.

Delet ing a Table

Here is how to delete a table. I won’t warn you to be careful.

`
`Remove the Suppliers table.
`
Begin SQL
 DROP TABLE Suppliers
End SQL

Code Breakdown

DROP TABLE completely removes the table. If you are certain you want to do this, this command could
come in handy.

NULLS

A NULL is a value that exists but is unknown. How does that help the developer when designing their database?
Consider the following scenario: You are tracking rates on goods from a small, independent supplier over the year.
In October, the building suffers heavy fire damage and the owner shuts down business operations for 2 weeks. At
the end of the year, you are interested in seeing the average daily cost per product from the supplier. How do you
treat the 2-week period where the business was down?

• Set the values during that time to a default value when calculating the daily average

• Ignore the 2 weeks when calculating the daily average

Depending on what you are trying to accomplish, it may make more sense to ignore the 2-week period. After all,
just because the goods did not sell, that does not mean that they had no value. They DID have value, but due to the
fire, it was unknown what those values were. In this situation, we would be treating the values during these 2 weeks
as NULLs. On the other hand, it may make more sense to default the values to known values such as a zero or the

 25

last-known good value. In this case, we would be treating the values during these 2 weeks as known values, not
NULLs. The choice heavily depends on what you are trying to accomplish in your report. The good news is that
4D provides you with the flexibility to use NULLs or not.

With the two options available in a field’s properties, developers can choose to reject NULLs altogether, or default
them to zeros or blanks.

CONCLUSION

Of all the little handbook-like documents on the internet for getting started with SQL, you now have a little
handbook-like document for getting started with SQL in 4D. Remember that this is far from a comprehensive list of
everything that can be done in the language. Implementing SQL into your databases is completely optional, of
course, but it never hurts to acquire a new skill.

4D University provides online training for beginning SQL, among other topics including uses with NULLs,
accessing system tables and connecting to external databases. Visit www.4d.com/training for more information.

